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Abstract

Purpose – The focus of this contribution is the correspondence between collective behavior 
and inter-individual interactions in the complex socio-economic systems. Currently there is a 
wide selection of papers proposing various models for the both collective behavior and inter-
individual interactions in the complex socio-economic systems. Yet the papers directly relating 
these two concepts are still quite rare. By studying this correspondence we discuss a cutting edge 
approach to the modeling of complex socio-economic systems.

Design/methodology/approach – The collective behavior is often modeled using 
stochastic and ordinary calculus, while the inter-individual interactions are modeled using 
agent-based models. In order to obtain the ideal model, one should start from these frameworks 
and build a bridge to reach another. This is a formidable task, if we consider the top-down 
approach, namely starting from the collective behavior and moving towards inter-individual 
interactions. The bottom-up approach also fails, if complex inter-individual interaction models 
are considered, yet in this case we can start with simple models and increase the complexity as 
needed.

Findings – The bottom-up approach, considering simple agent-based herding model as a 
model for the inter-individual interactions, allows us to derive certain macroscopic models of 
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the complex socio-economic systems from the agent-based perspective. This provides interesting 
insights into the collective behavior patterns observed in the complex socio-economic systems.

Research limitations/implications –The simplicity of the agent-based herding model 
might be considered to be somewhat limiting. Yet this simplicity implies that the model is 
highly universal. It reproduces universal features of social behavior and also can be further 
extended to fit different socio-economic scenarios.

Practical implications – Insights provided in this contribution might be used to 
modify existing policy making tools in order to cope with the social transformations in the 
contemporary society.

Originality/Value – The relationship between the inter-individual and the collective 
behavior is an interesting topic considered to be coming from rather different fields by many 
scientists. Yet the topic has received due attention only in the recent years. Consequently, 
the truly systematic approaches directly bridging between these two concepts are somewhat 
rare. These approaches also differ among themselves – some of the research groups consider 
questionnaires to understand the individual incentives of the humans, some suggest varying 
applications of the known physical models and some have roots in the behavioral economics 
and utility optimization. Our approach in this sense is unique as we start from a simple agent-
based herding model and use the ideas from the statistical physics to obtain its macroscopic 
treatments for the different socio-economic scenarios. In this contribution we present our 
previous approaches, namely considering new product diffusion in the market and also a 
financial market model, and also our most recent results, related to the leadership in the 
social communities and predator-prey type competition in the socio-economic systems. To the 
best of the authors’ knowledge, the correspondence between the considered simple agent-based 
herding model and the considered macroscopic models was not previously discussed by the other 
research groups.

Keywords: socio-economic systems, agent-based modeling, stochastic modeling.
Research type: research paper.

1. Introduction

The current economic crisis has provoked an active response from the interdisciplinary 
scientific community. As a result, many papers suggesting what can be improved in 
understanding of the complex socio-economics systems were published. Some of the 
most prominent papers on the topic include Bouchaud, 2008; Bouchaud, 2009; Colander 
et al, 2009; Farmer and Foley, 2009; Farmer et al, 2012; Helbing, 2010; Kitov, 2009; 
Pietronero, 2008. Most of these papers share the idea that agent-based modeling is 
essential for the better understanding of the complex socio-economic systems and, 
consequently, better policy making. Yet in order for an agent-based model to be useful, 
it should also be analytically tractable, namely it should possess a macroscopic treatment 
(Cristelli et al, 2012).
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In this contribution we shed a new light on our research group’s contributions 
towards understanding of the correspondence between the inter-individual interactions 
and the collective behavior. We also provide some new insights into the implications of 
the global and local interactions, the leadership and the predator-prey interactions in the 
complex socio-economic systems.

Further, in the Section 2 we provide a scientific background for our work. Section 
3 is used to present an agent-based herding model, which was proposed by Kirman 
(1993) and later analytically treated by Alfarano et al. (2005) and Kononovicius et al 
(2012). In the Section 4 we compare it with the Bass diffusion model (Kononovicius 
et al, 2012). Section 5 builds upon the previous material discussed in the Sections 3 
and 4 to provide insights into the implications of the global and local interactions in 
the complex socio-economic systems. In the Section 6 we consider another interesting 
implication of the base model which provides insights into the phenomenon of leadership 
in the social communities. The comparison with a widely known and used model, Lotka-
Volterra model, is given in the Section 7. In the Section 8 we discuss the financial market 
modeling and relax assumptions previously made in Kononovicius et al, 2012. In the 
Section 9 conclusions are drawn.

2. Background

The contemporary ideas proposed by Bouchaud, 2008; Bouchaud, 2009; Colander 
et al, 2009; Farmer and Foley, 2009; Farmer et al, 2012; Helbing, 2010; Kitov, 2009; 
Pietronero, 2008 and others are somewhat reminiscent of the ideas proposed by Axelrod 
(1998) and Waldrop (1992). In the last decade of the XXth century Waldrop (1992) and 
Axelrod (1998) have emphasized the importance of understanding the links between the 
inter-individual and collective behaviors.

In this sense, financial markets prove to be one of the most interesting socio-
economic systems, as there are numerous and rather different examples of both 
agent-based (Chakraborti et al, 2011; Cristelli et al, 2012; Samanidou et al, 2007) and 
macroscopic, mainly stochastic, models (Jeanblanc et al, 2009). Cristelli et al (2012) note 
that so far none of financial market models can be considered to be ideal, as some of the 
proposed models lack realistic microscopic interaction features, while the others tend to 
lack analytical tractability.

Excellent example of a realistic, yet not analytically tractable model, is so-called 
stochastic multi-agent model, which was proposed by Lux and Marchesi (1999). 
It is considered to be realistic, as it is heavily based on the ideas from the behavioral 
economics. These ideas are mathematically put down as utility functions, which agents 
attempt to maximize. Despite this microscopic rationality, the agents are not assumed 
to be ideally rational – the utility maximization in this model is stochastic. The overly 
complex mathematical form of the agent-based model, especially due to the use of utility 
functions, makes the macroscopic treatment of this model appear to be impossible.

Spin model of the financial markets proposed by Bornholdt (2001) is another 
example of the complex agent-based model. Yet, it is inspired by the model from the 
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statistical physics, which is the well-known Ising model used to model phase transitions 
and magnetic (Sethna, 2009). Spin model serves as an excellent example in the context 
of this contribution, as it directly draws an important analogy between atoms, agents 
and individuals. This model perfectly illustrates that, if we consider the statistical 
behavior of the large number of agents, it might not be that important what do agents 
represent – inanimate particles or rational individuals. All that actually matters is the 
essential similarities between the systems, e.g. socio-economic systems are prone to 
herding behavior, while the spins arranged as a lattice in the Ising model attempt to align 
themselves in one direction. The spin model of the financial markets is also an interesting 
example as it, despite its complexity, has recently received a macroscopic treatment. The 
approach by Krause et al (2012) was possible only due to spin model’s relationship with 
the Ising model, consequently, allowing direct usage of the well-developed mean-field 
methods from the statistical physics.

Minority Game, inspired by the “El Farol bar problem” (Arthur, 1994), is another 
agent-based model possessing macroscopic treatment (Challet et al, 2000). In this game 
the agents attempt to select the least popular of the available states. In the original 
formulation of the model agents opt to stay home or to visit a bar. If the majority of 
agents visits the bar, it is over-crowded and agents have a bad time. On the other hand, 
if the minority of agents visits the bar, they are able to have a good time. In the financial 
markets the two options are assumed to be opting to buy or to sell. If the majority of 
agents opts to sell, the prices and, consequently, the profits drop. On the other hand, if 
the minority of agents sells their stock, they are able to reap large profits as the prices 
soar. The formulation of the model is relatively simplistic and thus has a macroscopic 
treatment (Challet et al, 2000).

The latest attempt to propose simple, realistic and analytically tractable model was 
done by Feng et al. (2012). This attempt is unique, as it uses trader survey data and the 
empirical observations of the individual interactions to construct an agent-based model. 
The obtained agent-based model is simple enough to be treated macroscopically. The 
drawback of this approach is that it operates only on the daily and weekly scales.

Our group contributes to this trend by working on the agent-based herding model 
proposed by Kirman (1993). As our group has already proposed a macroscopic model for 
the trading activity (Gontis, 2008) and the absolute return (Gontis, 2010) in the financial 
markets, we aim to understand the relationship between these models and the agent-
based herding model. Interestingly enough, the agent-based herding model relates not 
only to the models previously proposed by us, but also to the some other well-known 
macroscopic models (Kononovicius et al, 2012). A similar mindset can be found in a 
series of papers by Alfi et al (2009a; 2009b). Alfi et al (2009a; 2009b) proposed a set 
of minimal agent-based models needed to recover the essential statistical features of the 
financial markets, mainly power-law distribution and certain dynamical self-organization 
features.
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3. The agent-based herding model and its macroscopic treatment

In his seminal paper Kirman (1993) noticed that very similar behavioral patterns 
are observed in rather distinct systems. This discovery led him to an agent-based model 
capturing very general features of the social behavior.

Kirman credits Pasteels et al (1987) as the first ones to observe a very interesting 
phenomenon – social insects acting asymmetrically in apparently symmetric setup. This 
group of entomologists observed the ant colony connected to the two identical food 
sources. Logically, one would expect that the both food sources would be used equally, 
yet at any given time the majority of ants used only one of the available food sources. 
From time to time the preferred food source was switched. Interestingly enough, these 
switches were triggered not by the exogenous forces, but by the system itself.

In a statistical sense, human crowds tend to behave quite similarly. Kirman (1993) 
cites numerous papers which note that the people tend to choose the more popular product 
over the less popular one, even if both products are of the similar quality. Apparently, 
the same ideas can even be applied to understand the dynamics of the financial markets.

Taking these observations into account, Kirman (1993) proposed a simple one-step 
transition model (see Figure 1 for the schematic representation of the model). In this 
model the probabilities for each single agent to switch the currently used food source are 
given by:

The above transition probabilities are defined per agent and per unit of time. Yet, they 
can be used to obtain system-wide transition probabilities for very short time periods, 

t∆ . In such case only one transition per single time period is probable (Alfarano et al, 
2005):
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Figure 1. Schematic representation of the Kirman’s model. Note that the ant colony 
is composed of a fixed number of ants, N . The ants use the left food source, X  ants, 
or the right food source, XN −  ants. Each ant chooses the used food source based on 
their individual preference, σ  terms, or due to the influence of the other ants, h  terms. 
In this scheme the food sources are assumed to be identical, yet in a more general setup 
two distinct individual preference terms, 1σ  and 2σ , should be included.

In order to obtain a macroscopic treatment for this agent-based herding model, 
let us assume that the number of agents is large enough, nearly infinite, to secure the 
continuity of the system state defined as NXx = . For x  we can define a continuous 
one-step transition probabilities per unit of time, ±π , which relate to the discrete one-
step transition probabilities,

The master equation for such process, by using birth-death process formalism (van 
Kampen, 2007) and by taking ),( txω  as a probability to find the system in state x  at 
time t , is given by

where ±E  are the one-step, increment and decrement, operators,

( )[ ] ( ) ( ) ( ) ( ),
2
x 2

2

xf+xfx±xfx±xf=xf xx
± ∂

∆
∂∆≈∆E   .1

N
x =∆

The above equation also provides an approximate expression for the one-step 
operator acting on any continuous function, ( )xf . By putting these approximations into 
the master equation, the Fokker-Planck equation is obtained,

The stochastic differential equation (abbr. SDE) corresponding to the above Fokker-
Planck equation is given by (Gardiner, 2009)

In the agent-based herding model case we obtain (Alfarano et al, 2005; Kononovicius 
et al, 2012)
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As you can see in Figure 2, time series obtained from the agent-based and stochastic 
models have the same probability density functions. This serves as an additional proof 
that the agent-based and stochastic models are equivalent.

Figure 2. The probability density functions obtained from the macroscopic, stochastic 
(curves) and the agent-based herding models (dots) in two distinct cases. Black curves 
and dots were obtained using 2.01 =σ , 52 =σ  parameter set, while gray curves and 
dots were obtained using , 52 =σ  parameter set. Other model parameters:

1=h  and 1000=N  (in all applicable cases).

The interactive programs of the agent-based and stochastic models are available 
online (see (Kononovicius, 2010) and (Kononovicius and Gontis, 2010)).

4. Bass diffusion model as a special case of the agent-based herding 
model

The Bass diffusion model is a prominent model in the marketing science, which 
is used to forecast the adoption rates of the new durable product (Prasad and Mahajan, 
2003). This model assumes, from the empirical point of view, that the potential 
consumers tend to adopt new product due to the advertising campaigns and interactions 
with other individuals, imitation. These assumptions were mathematically formalized as 
an ordinary differential equation:

where )(tX  is a total number of consumers at a given time t , N  is a market potential, 
σ  is the efficiency of advertising and h  is the imitation coefficient.

The agent-based herding model might be used as an agent-based alternative to 
the Bass diffusion model. Yet, the agent-based herding model needs to account for the 



Aleksejus Kononovicius, Valentas Daniunas. Agent-Based and Macroscopic Modeling of the Complex... 92

durability of the product, which makes the transition from the consumer to the potential 
consumer impossible, (Kononovicius et al, 2012)

The macroscopic model for this unidirectional agent-based herding model is 
identical to the mathematical form of the Bass diffusion model (Kononovicius et al, 
2012). As we can see in Figure 3, the agreement between the Bass diffusion model and 
the unidirectional agent-based herding model is good and improves with the increasing 
size of the system.

The interactive program of this model is available online (Kononovicius et al, 2011).

Figure 3. The product adoption, t∆ , per observation interval, τ , curves resulting 
from the Bass diffusion model (black curves) and the unidirectional agent-based herding 
model (gray dots). The model parameters were set as follows: σ = 0.01, 275.0=h  and 

1.0=τ  (in both cases), 1000=N  (a) and 10000=N  (b).

5. The extensive and non-extensive agent-based herding model

In the agent-based models we can assume that agents either interact on the local 
scale with their immediate neighbors or on the global scale with all of the agents (Purlys 
et al, 2012). In the former case the number of interaction links per agent remains the same 
as the system grows, thus the system is extensive, while in the latter case the number of 
interaction links per agent increases, thus the system is non-extensive. In these two cases 
rather different behavior would be observed and rather different distributions would 
be obtained – Gaussian distribution in the extensive case and heavy tailed power-law 
distributions in the non-extensive one (Tsallis, 2009).

Stationary probability density function (abbr. PDF) of the SDE is given by (Gardiner, 
2009)

( ) ( )
( )
( ) ,s
sg
sf

xg
C=xp

x











− ∫ d2exp 22
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where C  is a normalization constant, ( )xf  is a drift and ( )xg  is diffusion functions 
of the SDE. From the above function and the SDE for the non-extensive agent-based 
herding model the stationary PDF is obtained,

where . As you have seen before, the Bass diffusion model is similar – in 
the extensive case with an infinite population the macroscopic model would be given 
by ordinary differential equation. In the long run this kind of model would converge to 
a fixed point. Thus, stationary PDF of such model can be expressed via Dirac’s delta 
function,

where ( )2110 σσσ +=x  is a fixed point of convergence (in the Bass diffusion model 
case 10 =x ). However, in the agent-based modeling there can be no infinite system size. 
In the limit of large but finite system the extensive agent-based herding model is well 
approximated by the

The probability density function of this stochastic process is similar to Gaussian 
distribution,

where C′  is a normalization constant and A  is a first-order coefficient of the Taylor 
expansion of ( ) ( )xgxf 2  near 0x . As you can see, the width of this stationary PDF 
is inversely proportional to N , consequently, in the limit of large populations the 
probability density function converges to the Dirac’s delta function.

6. Leadership in the agent-based herding model

Social herding behavior leads to a collective decision making and raises a question of 
the importance of leadership in the social systems. In the modern literature this problem 
is considered both from the experimental (Dyer et al, 2009) and theoretical (Schweitzer 
et al, 2012) points of view. The mechanics behind the collective decision making in the 
agent-based herding model was discussed in the previous sections and should be clear. 
Yet the formulation of these mechanics implies that one can control the output of the 
model by including the agents with a preset opinion, the so-called leaders.
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Let us now include M  leaders into the agent-based herding model, so that the 
system is now composed of MN +  agents:

 

 
The corresponding macroscopic model, for NXx = , is given by

As you can see from the SDE and Figure 4, the leaders effectively increase the 
attractiveness of the selected state. This intuition is further supported by the mathematical 
forms of the stationary PDF and mean,

Figure 4. The leaders effect on the stationary PDF of the agent-based herding model. 
No leader case (black dots) and 20 leader case (gray dots) are shown. Other model 
parameters were set as follows: 221 == σσ , 1=h  and 1000=N .

Apparently, infinitely large social systems can be significantly influenced by a 
relatively small number of leaders. This is in agreement with the experiments by Dyer et 
al (2009), who have noticed that 20 informed people can lead large uninformed crowds. 
Arguably similar ideas might be already used as the marketing strategies (Kononovicius, 
2012; Prasad and Mahajan, 2003).

7. The agent-based herding model versus Lotka-Volterra model

Lotka-Volterra model was introduced as a macroscopic predator-prey model 
(Hoppensteadt, 2006), yet now it is a prominent model in a wide range of fields. Its 
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applications include macroeconomics (Goodwin, 1967; Tramontana, 2010), complexity 
science (Olivera et al, 2011), opinion dynamics (Ausloos, 2009; Vitanov and Ausloos, 
2012), financial markets (Solomon and Richmond, 2001) and others. Its general form is 
given by (Hoppensteadt, 2006):

,XcXXa=X j
j

ijiiiit ∑−∂

where ia  is a birth rate, while cij describes the interaction between the two species.
The most important difference between agent-based herding model and Lotka-

Volterra model is that the former uses fixed number of agents, while the latter allows 
creation and destruction of the agents. The Lotka-Volterra model can be seen as interacting 
with the thermostat, with which the modeled system exchanges agents. Introducing this 
feature into the agent-based herding model is a pretty technical task, so we skip the 
details and present only the macroscopic model:

where  is a generalized interaction function between the thermostat and the 
certain state, given by index i , in the system via creation or destruction of the agents in 
that state. The effect of this modification is only limited by the form of , yet the 
most straightforward use would be to introduce diffusion limiting, i.e. disallowing overly 
large or small x  values, into the model. This might be of a certain use in the financial 
market modeling (Gontis et al, 2008; Gontis et al, 2010).

Another important difference is that the agent-based herding model assumes that 
the herding is symmetrical, while it is asymmetrical in the Lotka-Volterra model. The 
difference arises from the fact that the agent-based herding model assumes that the nature 
of the agents is similar, while the interactions are considered to be of predator-prey type 
by the Lotka-Volterra model. Yet the asymmetry can be easily introduced into the agent-
based herding model,

where c  describes the herding asymmetry. The corresponding macroscopic model is 
given by:

In this case, the original stationary PDF is shifted by the exponential term in the 
direction of the asymmetry,

See Figure 5 for the results obtained from the agent-based model.
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Figure 5. The effect of asymmetric herding on the stationary PDF of the agent-based 
herding model. Black dots correspond to the symmetric herding case, 0=c , while the 
gray dots correspond to a certain asymmetric case, 5=c . Other model parameters were 
set as follows: 221 == σσ , 1=h  and 1000=N .

8. General class of stochastic differential equations and the  
agent-based herding model for the financial markets

Previously our research group proposed sophisticated double stochastic models 
for the trading activity and the absolute return in the financial markets (Gontis et al, 
2008; Gontis et al, 2010). These two models are able to reproduce the sophisticated 
statistical features of the high-frequency financial market data rather well. Despite being 
different in the details, these two models share the same base. They are both driven by 
the empirically derived SDE, general form of which is given by

Time series obtained by solving this SDE are known to have power law statistical 
properties – power spectral density (abbr. PSD) and stationary PDF (Ruseckas and 
Kaulakys, 2011),

We will derive this SDE from an agent-based model and, consequently, provide a 
general agent-based background for the financial market fluctuations.

To start, let us use a very common assumption that agents can use either fundamentalist 
or noise trading, chartist, strategies (Cristelli et al, 2012). Fundamentalist agents are 
assumed to possess a certain knowledge about the stock, which is mathematically 
formalized as a fundamental price, fP . As these agents assume that the price of the 
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stock will converge towards fP  (the market price will reflect knowledge), they sell, if 
( ) fP>tP , or buy, if ( ) fP<tP . Consequently, their excess demand is given by

( ) ( ) ( ) ,
tP

P
tN=tD f

ff ln     ( ) ( ).tXN=tN f −

Note that we have assumed that the fundamental price is constant, because we are 
interested in the endogenous dynamics.

The noise traders are assumed to use a wide variety of strategies relying on the past 
movements of the stock price. As the variety of strategies may be very large, the input of 
these agents can be related to an average mood, :

where 0r  is a relative impact of the noise trader agent.
Now, let us use the Walrasian scenario to obtain the stock price from the excess 

demand,

where we approximate the Walrasian scenario in the limit of an infinite population. 
Consequently, the return is given by

where we have assumed that ( ) ( ) ( )[ ]txtx=ty −1/  is a slowly varying absolute return 
process and  represents fast mood fluctuations. Due to the large 
variety of the noise trading strategies,  can be assumed to be a simple noise (Alfarano 
et al, 2005). In such case, all of the relevant dynamics are included in the absolute return. 
Macroscopic model for y  is easily obtained from the SDE for x  by using Ito variable 
substitution (Gardiner, 2009),

As the derivation of this SDE does not depend on the actual form of  σi and h , they 
might be assumed to be functions of either x  or y .
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Original agent-based herding model assumes that agents interact at a constant rate, 
while in the actual complex socio-economic systems interaction rates might be variable. 
In the financial markets this phenomenon is observed as fluctuating trading activity. So, 
let us assume that the herding behavior and the individual behavior of the noise traders 
are dependent on the global system state via a custom  function (Kononovicius et 
al, 2012),

In the limit of large y  and by assuming that , the above equation is 
reduced to SDE,

identical to the previously discussed general class of the SDEs. The relationship between 
the model parameters is given by  and . Note that we can use 
these relations and theoretical predictions by Ruseckas and Kaulakys (2011) to reproduce 
PDF and PSD with very different power-laws λ  and β  (see Figure 6).

For interactive program of this model, see Kononovicius and Gontis, 2012.

Figure 6. Wide spectra of obtainable probability (a) and spectral (b) density functions 
of absolute return, y . Black lines correspond to the limiting, minimum and maximum, 
exponents: (a) 2min =λ  and 5max =λ , (b) 5.0min =β  and 2max =β . Model parameters 
were set as follows: 1000=N , 1=α , 1.01 =σ , 1=h , 1.02 =σ  (plus), 5.0  (cross), 
1 (star), 5.1  (open square), 2  (filled square) and 3  (open circle).
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9. Conclusions

We have discussed our approaches to a simple agent-based herding model proposed 
by Kirman (1993). Despite its simplicity, this agent-based herding model captures or can 
be easily modified to capture essential features of the social behavior in many different 
complex socio-economic systems.

We have reviewed extensive and non-extensive approaches to the agent-based 
herding model. We have analytically shown that in the extensive, i.e. local interaction 
case with a finite population Gaussian distribution is obtained. In the non-extensive, i.e. 
global interaction case, we have shown that power-law distribution emerges.

We have modified the agent-based herding model to show that even small amount 
of leaders, agents with preset opinion, can influence the behavior of an infinitely large 
social system. Namely, we have injected agents with a preset opinion and observed that 
the whole population of the non-leaders, agents with no preset opinion, shifts its mean 
opinion towards the opinion held by the injected leaders. Apparently, the shift in the 
mean opinion depends only on the number of the leaders and not on the size of the social 
system.

We have also shown that the well-known prey-predator model, or Lotka-Volterra 
model, can be related to the agent-based herding model and used to introduce the 
interaction with thermostat. This result can be further used to introduce the diffusion 
limiting in the similar manner as it was done in the previous works related to the financial 
market modeling (Gontis et al, 2008; Gontis et al, 2010).

In the future we hope to apply this agent-based herding model to more socio-
economic systems. Also, the new approaches discussed in this work will be considered 
for the extended treatment.
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Santrauka. Šiame darbe nagrinėjame sąsajas tarp kolektyvinės elgsenos ir individų tar-
pusavio sąveikos sudėtingose socialinėse ir ekonominėse sistemose. Šiuo metu yra publikuota 
nemažai darbų, kuriuose siūlomi įvairūs individų tarpusavio sąveikos socialinėse ir ekono-
minėse sistemose modeliai. Mokslinėje literatūroje taip pat pastebimas nemenkas susidomė-
jimas makroskopiniu, arba kolektyvinės elgsenos, modeliavimu. Nepaisant aktyvaus domėji-
mosi idealaus modelio lig šiol vis dar nėra pasiūlyta. Ši problema iš esmės yra susijusi su tuo, 
kad idealus modelis turėtų susieti šias dvi sąvokas. Kolektyvinė elgsena dažnai modeliuojama 
stochastinės ir matematinės analizės įrankiais, šie modeliai yra vadinami makroskopiniais 
modeliais, o individų tarpusavio sąveikos modeliuojamos naudojant agentų formalizmą. Sie-
kiant pasiūlyti idealų modelį reiktų suprasti sąryšius tarp šių dviejų matematinių formaliz-
mų. Tai yra sunki užduotis, jei bandome ieškoti ryšių pradėdami nuo makroskopinių mo-
delių ir siekdami iš jų suprasti individų tarpusavio sąveikas. Nemažiau sudėtingas atrodytų 
ir bandymas pradėti iš kitos pusės, tačiau jei pasirinksime elementarų individų tarpusavio 
sąveikų modelį, sunkumų kilti neturėtų. Taigi ieškodami sąryšių tarp kolektyvinės elgsenos 
ir individų tarpusavio sąveikų visų pirma turime pradėti nuo elementarių agentų modelių 
ir tik vėliau pildyti juos sudėtingesne elgsena. Šios paieškos domina įvairiausių mokslų sričių 
mokslininkus. Vis dėlto pakankamai dėmesio šiai temai buvo skirta tik pastaraisiais metais, 
tad darbai, bandantys tiesiogiai susieti agentų ir makroskopinius modelius, vis dar yra gana 
reti. Šie darbai, nors siekia tokių pačių tikslų, taip pat yra gana skirtingi – dalis mokslininkų 
grupių kuria agentų modelius besiremdami apklausų duomenimis, kad suprastų individualią 
žmonių elgseną, dalis mokslininkų bando taikyti įvairius fizikinius modelius socialiniams 
reiškiniams modeliuoti, dalis remiasi elgsenos ekonomikos pasiekimais ar naudos funkcijų 
optimizavimo idėja. Mūsų grupės tyrimai remiasi elementariu dviejų būsenų agentų bandos 
jausmo modeliu, kurį 1993 metais pasiūlė A. Kirman. Šis modelis yra gana universalus, nes 
atsižvelgia tik į esminius ir universaliausius socialinio elgesio aspektus – polinkį į individua-
lizmą ir norą priklausyti bendruomenei. Šiame darbe mes apžvelgėme keletą galimų šio mo-
delio taikymų. Visų pirma mes pademonstravome, kad šis modelis yra mikroskopinis Bass‘o 
sklaidos modelio, kuris yra plačiai naudojamas marketingo teorijoje, analogas. Kitas gerai 
žinomas ir plačiai įvairiausių socialinių ir ekonominių sistemų modeliavimui naudojamas 
makroskopinis Lotka-Volterra modelis taip pat gali būti susietas su agentų bandos jausmo 
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modeliu. Iš Kirman‘o agentų modelio išvedėme lygtis, kurios gali būti tinkamos finansų rinkų 
modeliavimui. Šiame darbe palietėme ir labai svarbią lyderystės socialinėse bendruomenėse 
temą ir parodėme, kad agentų noras priklausyti bendruomenei sudaro prielaidas netiesiogiai 
valdyti visos sistemos elgseną.

Reikšminiai žodžiai: socialinės ir ekonominės sistemos, agentų modeliai, stochastiniai 
modeliai.


