
ISSN 2029-7564 (online)
SOCIALINĖS TECHNOLOGIJOS
SOCIAL TECHNOLOGIES
2011, 1(2), p. 399–414.

Socialinės technologijos/Social Technologies
 Mykolo Romerio universitetas, 2011
 Mykolas Romeris University, 2011

ISSN 2029-7564 (online)
https://www.mruni.eu/lt/mokslo_darbai/st/apie_leidini/
https://www.mruni.eu/en/mokslo_darbai/st/apie_leidini/index.php

AUTOMATED EVALUATION OF COMPUTER PROGRAMS 
AT UNDERGRADUATE LEVEL: SUITABILITY STUDY FOR 

COMPETITIVE EVENTS

Jūratė Skūpienė
Mykolas Romeris University, Lithuania, jurate.skupiene@mruni.eu

Abstract

Purpose—The paper is aimed towards the problem of automated evaluation of computer 
programs designed by students during competitive events where the participants have to design 
an algorithm and to implement it as a working program, which has to be evaluated. A similar 
evaluation has to be performed at universities by the lecturers teaching basics of programming. 
The purpose of this paper is to investigate the automated evaluation applied to computer 
programs designed by the university students, and to analyze the suitability of such methods 
for evaluation of computer programs designed by high school students in competitive events.

Design/methodology/approach—Comparative analysis is the main approach used in 
this paper.

Findings—The educational and technical goals that seek evaluation of computer 
programs at the university level are different from those in informatics contests. Therefore the 
majority of approaches applied at universities have led to development of automated evaluation 
systems with functionalities different than the ones required by informatics contests, and in 
the opinion of the author cannot be easily transferred to informatics contests. We identified 
one area where such transfer might be possible: automated evaluation of programming style.

Research limitations/implications—The experience of automated evaluation of 



Jūratė Skūpienė. Automated Evaluation of Computer Programs at Undergraduate Level: Suitability Study...400

programming style applied at the universities has a potential to be transferred to informatics 
contests; however the universities may ask their students to apply specific programming style, 
while informatics contests should accept a very broad range of reasonable programming styles. 
Additional investigation is required to answer the question in which way and to which 
extent the experience gained at the universities can be applied in informatics contests and the 
maturity exam. 

Practical implications—This paper is a step towards developing a fair and motivated 
evaluation scheme in informatics contests. The paper would be useful for the researchers as it 
gives guidelines for future research. 

Originality/Value—It is very important to apply fair and motivated evaluation in 
informatics contests as they involve the majority of high-school students interested in computer 
science in Lithuania and some other countries as well and may motivate them to study 
computer science at the university. To the knowledge of the author, this is the first paper 
analyzing the suitability of automated evaluation methods developed at the university level, 
to be applied for the evaluation at high school level in particular in informatics contests. On 
the other hand, the evaluation in informatics contests is an issue that attracts the interest of 
international community of informatics contests.

Keywords: automated evaluation, programming assignments, programming courses, 
programming style, automated evaluation systems, informatics contests.

Research type: literature review.

1. Introduction

There are many co-curricular activities in which the motivated high school students 
are involved in competitive learning. Informatics contests are introduced as the fastest 
expanding co-curricular activity related to computer science which is seen as a good 
model of competitive learning (Revilla et al, 2008). They are the contests of algorithmic 
problem solving. The contestants are given an algorithmic problem and have to design 
an algorithm, to implement it, and submit as a working program. The proof of the 
algorithm correctness and efficiency is not required. One of the reasons is that presenting 
a correctness proof to such problems is too difficult for the contestants who are still at 
high school.

Thus we arrive at the concept of an algorithm-code complex. The term stands for a 
program which contains an implementation of an unknown algorithm designed to solve 
the given task. An algorithm-code complex combines the outcome of both an algorithm 
design and program development. As a result, it becomes hard to evaluate characteristics 
of the algorithm, and of its implementation in the algorithm-code complex, because it 
is hard to separate them and identify whether a feature of an algorithm-code complex 
belongs to an algorithm or to its implementation. Thus, evaluation of qualities of an 



Social Technologies. 2011, 1(2): 399–414. 401

algorithm-code complex in informatics contests becomes an interesting scientific 
problem.

The current practice of many such contests is that the dominant part of evaluation 
(i.e. deciding about properties and qualities of implemented algorithm and the 
implementation in a form of scores) is based on empirical black-box testing of algorithm-
code complex. Task designers have certain expectations about the relationship of the 
quality and characteristics of solutions to the measure of those qualities expressed in 
points.

However, the essence of black-box testing is that no knowledge of key ideas of 
algorithm, internal logic and code structure is revealed. Therefore, the conclusions about 
the qualities of the algorithm-code complexes made in the form of assigned scores raise 
various educational and scientific questions.

Similar educational situation is often encountered at the universities providing 
introductory programming courses. Originally automated evaluation was developed 
at universities for evaluating submissions to programming assignments given in the 
programming courses, and a lot of research is designated to that. We use the term 
programming assignment when we refer to the tasks given in the programming courses 
to make distinction from the tasks given in informatics contests. Typically, static and/or 
dynamic evaluation is performed to evaluate programs which are given as an assignment 
or an exam task in undergraduate courses of computing education.

Technically both in informatics contests and in the programming courses we deal 
with an algorithm presented in the form of implementation.  Therefore analyzing the 
experience of the universities might assist in developing a fair grading in informatics 
contests.

There have been published many papers about different aspects of evaluation in 
informatics contests (Cormack et al., 2006; Pohl, 2006; Skienna and Revilla, 2003; 
Trotman and Handley, 2006; Vasiga et al., 2008; Verhoeff, 2009). In this paper we will 
overview the finding and trends in the automated evaluation of programming assignments 
at undergraduate level with special emphasis on the suitability of the applied practices 
for informatics contests.

2. Development of Automated Evaluation of Programming  
Assignments

The roots of necessity to the automated evaluation are similar both in informatics 
contests and in programming courses. Programming problems and assignments are 
considered essential elements of software engineering and computer science education 
courses (Douce et al., 2005). Academic institutions face the challenge of providing 
their students with a better teaching quality. Simultaneously they need to decrease the 
amount of additional work for the staff. As a consequence of that, huge numbers of 
programming assignments (programs) have to be evaluated and provided with feedback 
in a short period of time (Joy and Luck, 1995).



Jūratė Skūpienė. Automated Evaluation of Computer Programs at Undergraduate Level: Suitability Study...402

The schedule is even tighter in informatics contests. It can be estimated that over a 
thousand submissions have to be evaluated in a few hours in IOI. Therefore at present it 
is considered that there is no alternative to automated evaluation neither in informatics 
contests, nor in programming courses (Kemkes et al., 2006).

Automated evaluation tools of programming assignments share common 
features like speed, consistency, and availability of evaluation (Ala-Mutka, 2005). A 
comprehensive overview of automated evaluation systems was presented in (Colton et 
al., 2006; Douce et al., 2005).

The earliest examples of the automated evaluation system can be found 
(Hollingsworth, 1960). The next step was a system, where automated evaluation 
was applied in testing beginner’s student programs written in Algol. Routines had to 
be written for each task. The tests were randomly generated and the programs were 
executed with those tests. The output was checked for correctness (Forsythe and Wirth, 
1965). New ideas were introduced in (Hext and Winings, 1969). This system could 
already compile and run programs without a human intervention and it was testing each 
program with two tests. It had implemented the scoring policy, i.e., assigned points 
for a successful compilation, a short running time, etc. Those earliest first generation 
automated evaluation systems already had the most important features and demonstrated 
the power of automated evaluation. Using automated evaluation tools of the first 
generation required a certain qualification and experience.

Automated evaluation systems of the second generation were tool-oriented systems 
(Douce et al., 2005). They were developed using existing tools. The focus of such 
systems was the same as in the earlier systems, i.e., functional correctness of submitted 
programs. Some second generation systems already had already implemented a remote 
submission and use of a network (Benford et al., 1995; von Matt, 1994). The automated 
evaluation systems started to support grading with generation of grading reports that 
allow the tutors to assign the weights to the tests.

The third generation automated evaluation systems can be called web-oriented 
tools. They use web-technology, adopt more sophisticated testing approaches (e.g. 
“diagram” evaluation in CourseMarker (Cou, 2010)), support many programming 
languages, automatically evaluate the program design, provide a rich feedback for the 
student, introduce plagiarism detection, etc. (Douce et al., 2005).

Note that there were many informal grading systems developed, where it is difficult 
to transfer the results among institutions and even among course instructors (Edwards, 
2003).

Development of automated evaluation in informatics contests has some parallels. 
We have not found a published overview of the development of evaluation systems in 
informatics contests. However we observed the appearance of tool-oriented evaluation 
systems and their development into web-based CMS (Contest Management System) 
in LitIO and IOI (Skupiene, 2004). Earlier systems were more limited technically. For 
example, they did not provide real-time feedback during the contest. The contestants 
had no aid in detecting errors related with format specification (e.g., the wrong file 



Social Technologies. 2011, 1(2): 399–414. 403

name or extra space at the end of the line). As a result, those errors had more weight in 
informatics contests than they were supposed to.

Modern web-based contest management systems (IOI, 2002; Mareš, 2007) for 
managing informatics contests are supplied with many features like real-time feedback 
during the contest, contest management features, analysis mode after the contest, etc. 
They have improved the quality of contests in many aspects. However, the main concern 
of applying black-box testing to the evaluation in informatics contests (i.e., detecting 
all incorrect submissions and validity of assigning partial scores to such submissions) 
remains. 

3. New Role of Automated Evaluation Tools in Programming 
Courses

In recent years the role of automated evaluation tools in computer science and 
programming courses has changed significantly. 

Looking at the history of automated evaluation in programming courses in 
universities, we observe a shift of emphasis. The ability to automatically compile, run, 
and test a student’s program and provide the score was most important in the early 
systems. These remain important issues both for the contests and for the programming 
courses. However, the emphasis was shifted in different directions in the informatics 
contests and in the evaluation of programming courses.

A course on a subject (programming) is a lengthy process which involves many 
assignments, submissions and resubmissions, deadlines, observation of student’s 
performance, progress, and feedback from the evaluator. The grading tool components 
that support the course management became important (Benson, 1985). Even though 
the main role remains measuring student knowledge and skills, the role of a grading 
tool as a learning device became very significant. The students need supporting learning 
(and evaluation) environments, because the learning environments help achieve better 
learning outcomes (Roberts and Verbyla, 2002). Designing a course and comfortable 
monitoring of the learning and evaluation process became important features of learning 
environments and tools.

Automated evaluation systems try to solve a number of other issues that are outside 
the scope of informatics contests, for example, plagiarism detection, evaluating programs 
with graphical interfaces, performing the formative assessment of programming 
assignments, evaluating the automated programming assessment with respect to 
the stated objectives, student’s knowledge of language constructions, analysing the 
program structure in order to identify whether the program followed the given skeleton, 
supporting different types of assignments, parameterising programming problems, and 
peer-assisted automated evaluation. These other issues were discussed in (Amelung et 
al., 2006; Benson, 1985; Carter et al., 2003; Douce et al., 2005; Lewis and Davies, 2004; 
Malmi et al., 2002; Pardo, 2002; Saikkonen et al., 2001; Woit and Mason, 1998).



Jūratė Skūpienė. Automated Evaluation of Computer Programs at Undergraduate Level: Suitability Study...404

The new roles require additional features of the environments and they have become 
an active topic of research in the area of computing science education. On the contrary, 
that did not become an active topic in informatics contests and they are not relevant in 
the context of this research.

The CMS does not have to perform the role of a learning tool in informatics contests. 
Some other features (e.g., evaluating programs with graphics) might become relevant if 
the format of the contest were different. The attitude towards the support and feedback 
for the contestants is different. The contestants are provided support from the CMS on 
the issues that might distract them from concentrating on the algorithm. For example, 
the CMS detects output formatting errors or provides run-time information. Providing 
too much feedback might conflict with the nature of the contest as an event. With the 
growing speed of processors, precise measurement of program execution time becomes 
highly important in informatics contests as this is directly related to the ability of the 
system to distinguish between different efficiency classes of solution. Advertising the 
contest (e.g. the ability to demonstrate the scores of the contestants on a live score board 
for the spectators during the contest) is another new expected feature of CMS.

Here we have shown that the research of automated evaluation in computing 
education is relevant and active. However, the direction of the research is different from 
that in informatics contests (Fig. 1). The number of recent publications directly related 
to the evaluation of programming assignments is very limited. That was also mentioned 
(Ala-Mutka, 2005). Next we will look over the automated evaluation experience in 
programming courses. 

Figure. 1. The directions of development of automated evaluation in programming courses and  
in informatics contests



Social Technologies. 2011, 1(2): 399–414. 405

4. Evaluating Programming Assignments by Testing

In this chapter we will look through some aspects of applying black-box testing in 
the evaluation of programming assignments. We located just a few sources and the most 
extensive reference is (Ala-Mutka, 2005).

We did not find any extensive discussions in the published papers based on the fact 
that testing cannot be used to prove the program correctness (in our case the algorithm-
code complex correctness) (Dijkstra, 1972).

We suggest that one of the reasons is the difference in the difficulty of tasks. The 
tasks at high level informatics contests might be a real challenge even for graduates 
of computer science studies. Therefore heuristic approaches are common among the 
submissions of contestants. They are incorrect, and it is rather difficult to detect all of 
them by black-box testing (Verhoeff, 2006).

The situation is different with the course assignments. Much research was devoted 
to the automated evaluation of introductory programming assignments (Califf and 
Goodwin, 2002), which are much easier if compared to the contest tasks. The assignments 
have to reflect the syllabus and should be solvable after taking the course.

Despite the inability to prove program correctness, testing still can show the absence 
of known errors (Leal and Moreira, 1998). For simple assignments (e.g. sorting an array) 
that are routinely given to the students, it is much easier to decide on the known errors 
and make tests against them. This might be the reason why we did not find discussions 
about the ability of black-box testing to detect errors in programming assignments.

In the informatics contests each task is (expected to be) original, requires problem 
solving skills and more complicated techniques. Therefore the concept of known errors 
remains rather vague in the informatics contests.

Assigning the score to incorrect solutions is a questionable issue both in evaluating 
the programming assignments and submissions (Verhoeff, 2006). The concept how close 
the algorithm-code complex is to the correct solution is a subjective judgement. The 
subjectivity arises either from the human grader or from the nature of black-box testing. 
In general, the black-box testing does not expose neither the nature, nor the scope of 
error). The practice of applying all-or-nothing scoring with a possibility of resubmission 
is acceptable for regular programming assignments (Colton et al., 2006). In the case of 
failure, the students might be given the failed test and have to fix their solutions. This is 
the essential difference from the practice of informatics contests. In the contests, the test 
set is fixed before the contest and the same set is applied to every submission to ensure 
the same testing conditions. While in the evaluation of programming courses, it is usual 
to apply randomly generated tests for evaluation and different students might be tested 
by different sets of tests (Colton et al., 2006). Such a practice is not directly applicable 
in the informatics contests.

We have found one more interesting approach that correlates with informatics 
contests. It deals with measuring the solution complexity (efficiency). This is the 
experience of assessing individual procedures rather than programs. The automated 
evaluation system Scheme-robo was developed and the experience of assessing simple 



Jūratė Skūpienė. Automated Evaluation of Computer Programs at Undergraduate Level: Suitability Study...406

assignments in introductory programming courses was presented (Saikkonen et al.,2001). 
(Hansen and Ruuska, 2003) have implemented it by giving the students an input/output 
module for the assignments that concentrate on efficient data processing algorithms. 
Calculating the number of times, certain structures inside the program were executed, 
and comparing the results to model the solution was implemented on CourseMaster and 
Assyst systems (Foxley et al., 2004; Jackson and Usher, 1997).

A similar suggestion to use such a metric in the informatics contests was presented 
by (Ribeiro and Guerreiro, 2009). They address the difficulties related to measuring the 
efficiency. As the computer power increases, the size of input has to increase in order 
to separate the solutions of different complexity. Data increase causes other problems. 
Measuring behaviour of some structures within the program might be a solution in this 
case. The paper suggests asking to submit functions (procedures) rather than programs 
and repeating the same function call several times to increase clock precision. Thus input 
size, which nowadays has become too large and started causing problems, is decreased. 
Curve fitting analysis is proposed to be used to estimate program complexity rather than 
referring to the number of passed test cases. However experiments and the corresponding 
software are required before the proposal can be included into the evaluation scheme.

We presented a few examples of similar issues which occur in both contexts. On the 
one hand, this shows that concerns about black-box testing are not so active and severe 
in the evaluation of programming assignments. We did not discover the experience 
that could be directly transferred to informatics contests. The suggested different 
measurement of the algorithm-code complex efficiency is interesting and potentially 
applicable in informatics contests. 

5. Automated Evaluation of Programming Style

From the observations in the previous chapters we have concluded that much of 
research in the area of automated evaluation in the programming courses is outside 
the interest of evaluation in the informatics contests. However, we have found an area 
where the experience of automated evaluation in the mass programming courses might 
be transferred to the informatics contests.

It is the automated evaluation of the quality of program design. This involves 
performing a static analysis and checking the program source against a set of 
characteristics. Many grading tools were designed that perform a static analysis and 
use software metrics to check readability, maintainability, and complexity of the 
source code (Ala-Mutka et al., 2004; Hirch and Heines, 2005; Jackson, 2000; Leal and 
Moreira, 1998; Spacco et al., 2005). Such tools were applied in evaluating programming 
assignments in universities. However, we found no evidence of such automation being 
applied in informatics contests.

The ability to write nice and elegant programs is already a skill and a very important 
skill which is not usually the focus of computer science and programming courses 
(Kernighan and Pike, 1999). It is easy to make a small program working despite a bad 



Social Technologies. 2011, 1(2): 399–414. 407

style. Students often treat the programming style as secondary, not part of the program 
development process (Schorsch, 1995). That was also noticed both in the context of 
programming courses and in the context of informatics contests (Douce et al., 2005; 
Grigas, 1995; Struble, 1991).

In order to measure the programming style, we need a common understanding of 
programming style. “A programming style is understood as an individual’s interpretation 
of a set of rules and their application to the writing of source code in order to achieve 
the aim” (Mohan and Gold, 2004) that the source code is readable and understandable. 
It can be said that everything that is related to program clarity, simplicity and generality, 
is understood as programming style. These types of definitions together with some 
guidelines can be applied for holistic approach to evaluate the programming style by 
human evaluators. 

However, in order to introduce the automated evaluation, the elements of the style 
should be identified and concrete metrics for each element must be defined (Fig. 2) and 
associated with ranges of the expected values (Hirch and Heines, 2005).

Figure 2. Holistic versus automated evaluation of programming style

The first tools for the automated evaluation of programming style were created in 
the eighties. Then the basic guidelines for the programming style were created. One 
of the early systems was a Style system (Rees, 1982) for automated evaluation of the 
programming style of Pascal programs. The system had ten style measures that could be 
easily calculated. They were: average line length, percentage of comment lines, numbers 
of goto’s, average length of identifiers, use of blank lines as separators, etc. The scoring 
scheme included five parameters for each metric which defined the conversion curve 
presented in Fig. 3. The parameter max specifies the maximum score to be awarded for 
each measure. If the value of the measure lies in the range defined by lotol and hitol then 
the maximum score for that measure is given. If the value of the measure is lower than lo 
or higher than hi, then the score is zero. For example, it the percentage of comment lines 
in the source is either very low (basically no comments) or very high (nearly every line 



Jūratė Skūpienė. Automated Evaluation of Computer Programs at Undergraduate Level: Suitability Study...408

is commented) then the score for this measure would be very low. To get a maximum 
score the amount of comments should be within some reasonable range. 

The total score was an aggregate of the scores of separate metrics.

Figure 3. Programming style marking scheme suggested by (Rees, 1982)
max—maximum score for the programming style. If the value of a concrete style measure is lower that lo or 

higher than hi then the score is zero

Later on, a C analyser was developed for evaluating the programming style. It 
served as a basis for developing other automated evaluation tools (Benford et al., 1995; 
Berry and Meekings, 1985). The feature of those systems was that the course designers 
could configure the parameter values for the metrics. The new tools foresee other 
programming languages (Jackson and Usher, 1997; Leal and Moreira, 1998; Redish and 
Smyth, 1986) and more metrics. For example, (Dromey, 1995) incorporated 99 metrics 
for automated evaluation of C programs. A variety of tools and the increasing number 
of metrics resulted in the classification of measurements and developing taxonomy for 
the programming style (Oman and Cook, 1990). The taxonomy proposed four stylistic 
factors. These were: general programming practices, typographic style, control structure 
style, and information structure style.

Among later systems we could mention Checkstyle for automated evaluation of 
Java programs (Burn, 2003). This is an open source tool that provides an extensive 
analysis of the source code programming style. The feature of this tool is its modularity. 
The Checkstyle consists of a variety of checks and additional checks can be written to 
include new metrics.

Earlier available systems either did not cover important features of object-oriented 
programming or used some obsolete checking which is currently performed by 
compilers. Therefore a STYLE++ tool has been created for automated evaluation of 
the programming style of C++ programs (Ala-Mutka et al., 2004). The tool covers 64 
different measures. Metrics were developed that meet the software quality requirements. 



Social Technologies. 2011, 1(2): 399–414. 409

They also included non-functional quality requirements, such as reliability and 
efficiency. Four programming style categories have been introduced: transportability, 
understandability, modifiability, and readability. They were decomposed into nine 
smaller categories until measurable features of a concrete level have been reached. 
Scoring is based on the ideas of (Rees, 1982), however, since different courses may 
require emphasis of different style aspects, the system allows much tailoring, irrelevant 
measures may be switched off and different weights might be associated with different 
measures.

Program documentation (which includes proper commenting) can be considered 
as a separate part of programming style. We discovered efforts to create an automated 
evaluation tool for evaluating the quality of program code documentation. Even though 
currently there are no guidelines (and no measurable standards) how to perform such an 
evaluation, there exist tools that help creating such a documentation. Given those tools 
students, should be required to produce a qualitative documentation (Hirch and Heines, 
2005).

The interest in the automated programming style has lowered if compared to the 
eighties. The efforts to find modern program style development tools or programming 
style evaluation guidelines for C++ evaluation for educational purposes were 
unsuccessful (Ala-Mutka et al., 2004). The accessible guidelines are industrial high-
level recommendations for object-oriented program design.

There is one significant difference between the evaluation of programming style in 
the programming courses and that in the informatics contests. Universities sometimes 
develop their own standards, they might ask the students to follow some specific 
programming style standards, while the informatics contests should be open to a variety 
of programming styles. The contestants do want precision when they deal with getting 
or loosing points (Grigas, 1995). To ensure equal conditions for the contestants, the 
evaluation of programming style should be language independent.

Note that evaluation of the quality of program design is supported not by all 
educators. Design is important if the program works. There is an opinion that, once the 
students have learned to program, it is easy to teach them good design, but not vice versa 
(Daly and Waldron, 2004).

It can be concluded that much research has been done in the area of evaluating 
programming style of programming assignments in the programming courses, and 
we found no evidence of any of that being applied in the informatics contests. The 
main idea of the automated evaluation of programming style is performing the static 
analysis, calculating different metrics, and associating the expected ranges. We feel 
that this experience can be transferred to the informatics contests. In order to apply the 
experience in the informatics contests, the research should be conducted in two areas. 
Metrics should be chosen and tailored so that they would not favour some programming 
styles and disfavour the others. Another direction of research is to ensure the evaluation 
compatibility between different programming languages.



Jūratė Skūpienė. Automated Evaluation of Computer Programs at Undergraduate Level: Suitability Study...410

6. Conclusions

The automated evaluation of programming assignments is not a new area in 
computing education research. Much research on the evaluation of programming 
assignments during the programming courses has been conducted and published. 
However, the research and development of tools of automated evaluation of programming 
assignments are moving into a direction different than that of the informatics contests. 
We suggest two main reasons. One reason is that informatics contests are not part of 
any successive learning process, therefore many aspects relevant in the learning process 
are not valid in the informatics contests. The second reason is nature and difficulty of 
tasks. Programming assignments should be coherent with course curricula while tasks in 
informatics contests are problem solving tasks covering broad range of topics. Therefore 
some approaches (like concept of known errors) that can be applied for evaluation of 
completed programming assignments cannot be applied in informatics contests. 

An exception is automated evaluation of programming style. Many tools were 
created for this purpose and much research has been pursued on applying such tools to 
the programming courses. We see the potential that this experience might be transferred 
to informatics contests especially at a national level. However, it requires an extensive 
separate study to ensure that automated evaluation of programming styles does not 
favour some programming styles and disfavour the others.

Literature

Ala-Mutka, K. 2005. A survey of automated 
assessment approaches for programming 
assignments. Computer Science Education, 
15(2):83–102.

Ala-Mutka, K., Uimonen, T., and Jarvinen, H. 
M. 2004. Supporting students in c++ pro-
gramming courses with automatic program 
style assessment. Journal of Information 
Technology Education, 3:245–262. 

Amelung, M., Piotrowski, M., and Rosner, D. 
2006. EduComponents: experiences in e-
assessment in computer science education. 
ACM SIGCSE Bulletin, 38(3):1–5.

Benford, S. D., Burke, E. K., Foxley, E., and 
Higgins, C. A. 1995. The Ceilidh system for 
the automatic grading of students on pro-
gramming courses. In Proceedings of the 
33rd annual on Southeast regional confe-
rence, p. 176–182. 

Benson, M. 1985. Machine assisted marking of 
programming assignments. ACM SIGCSE 
Bulletin, 17(3):24–25. 

Berry, R. E. and Meekings, B. A. E. 1985. A 
style analysis of C programs. Communi-
cations of the ACM, 28(1):80–88. 

Burn, O. 2003. CheckStyle. SourceForge.net. 
[interactive] [accessed 27-12-2011] <http://
checkstyle.sourceforge.net/>. 

Califf, M. E. and Goodwin, M. 2002. Testing 
skills and knowledge: introducing a labora-
tory exam in CS1. ACM SIGCSE Bulletin, 
34(1):217–221. 

Carter, J., Ala-Mutka, K., Fuller, U., Dick, M., 
English, J., Fone, W., and Sheard, J. 2003. 
How shall we assess this? ACM SIGCSE 
Bulletin, 35(4):107–123. 

Colton, D., Fife, L., and Thompson, A. (2006). 
A web-based automatic program grader. In 



Social Technologies. 2011, 1(2): 399–414. 411

Proceedings of ISECON, the Conference 
for Information Systems Educators, v. 23, p. 
1–9, Dallas, USA.

Cormack, G., Kemkes, G., Munro, I., and Vasi-
ga, T. 2006. Structure, scoring and purpose 
of computing competitions. Informatics in 
Education, 5(1):15–36.  

CourseMarker. Automatic Marking and Feed-
back for Students and Teachers. [interacti-
ve] School of Computer Science and IT, 
The University of Nottingham, UK. 2010 
[accessed 27-12-2011] <http://www.cs.nott.
ac. uk/~cmp/cm_com/index.html>. 

Daly, C. and Waldron, J. 2004. Assessing the 
assessment of programming ability. In Pro-
ceedings of the 35th SIGCSE technical sym-
posium on Computer science education, p. 
210– 213. 

Dijkstra, E. W. 1972. The humble programmer. 
Communications of the ACM, ACM Turing 
Lecture, 15(10):859–866.

Douce, C., Livingstone, D., and Orwell, J. 
2005. Automatic test-based assessment 
of programming: A review. ACM Journal 
of Educational Resources in Computing, 
5(3):1–13.

Dromey, R. G. 1995. A model for software pro-
duct quality. IEEE Transactions on Software 
Engineering, 21:146–162. 

Edwards, S. H. 2003. Rethinking computer 
science education from a test-first perspecti-
ve. In Companion of the 18th annual ACM 
SIGPLAN conference on Object-oriented 
programming, systems, languages, and ap-
plications, p. 148–155, Anaheim, CA, USA. 

Forsythe, G. E. and Wirth, N. 1965. Automatic 
grading programs. Communications of the 
ACM, 8(5):275–278. 

Grigas, G. 1995. Investigation of the relations-
hip between program correctness and pro-
gramming style. Informatica, 6(3):265–276. 

Hansen, H. and Ruuska, M. 2003. Assessing 
time efficiency in a course on data structures 
and algorithms. In Koli Calling 2003, 3rd 
Annual Finnish/Baltic Sea Conference on 
Computer Science Education, p. 86–93.

Hext, J. B. and Winings, J. W. 1969. An auto-
matic grading scheme for simple program-
ming exercises. Communications of the 
ACM, 12(5):272–275. 

Hirch, B. and Heines, J. M. 2005. Automated 
evaluation of source code documentation: 
Interim report. In Proceedings of the 36th 
SIGCSE technical symposium on Computer 
science education, p. 1–5, S. Louis, Missou-
ri, USA. 

IOI’2002 manual. [interactive] South Korea 
2002, [accessed 27-12-2011] <http://www.
ioi2002. or.kr/eng/PracticeCompetitionMa-
terial/ ContestSystemManual.pdf>. 

Hollingsworth, J. 1960. Automatic graders for 
programming classes. Communications of 
the ACM, 3(10):528–529. 

Jackson, D. 2000. A semi-automated approach 
to online assessment. In Proceedings of the 
5th annual SIGCSE/SIGCUE ITiCSE con-
ference on Innovation and technology in 
computer science education, p. 164–167, 
Helsinki, Finland.

Jackson, D. and Usher, M. (1997). Grading stu-
dent programs using ASSYST. ACM SIGC-
SE Bulletin, 29(1):335–339. 

Joy, M. and Luck, M. 1995. On-line submission 
and testing of programming assignments. In 
Innovations in Computing Teaching, SEDA, 
London.

Kemkes, G., Vasiga, T., and Cormack, G. 2006. 
Objective scoring for computing competi-
tion tasks. In Proceedings of International 
Conference in Informatics in Secondary 
Schools –Evolution and Perspectives, Lectu-
re Notes in Computer Science, p. 230–241. 
Springer-Verlag.

Kernighan, B. W. and Pike, R. 1999. The 
Practice of Programming. Addison-Wesley. 

Leal, P. J. and Moreira, N. 1998. Automatic 
grading of programming exercises. [inte-
ractive] Technical report series: Dcc-98-4, 
University of Porto, Portugal, Department of 
Computer Science. [accessed 27-12-2011] 
<www.ncc.up.pt/~nam/ publica/dcc-98-4.
ps.gz>. 



Jūratė Skūpienė. Automated Evaluation of Computer Programs at Undergraduate Level: Suitability Study...412

Lewis, S. and Davies, P. 2004. The automated 
peer-assisted assessment of programming 
skills. In Proceedings of the 8th JAVA & The 
Internet in the Computing Curriculum Con-
ference JICC8, p. 1–10. 

Malmi, L., Korhonen, A., and Saikkonen., R. 
2002. Experiences in automatic assessment 
on mass courses and issues for designing 
virtual courses. ACM SIGCSE Bulletin, 
34(3):55–59. 

Mareš, M. 2007. Perspectives on grading sys-
tems. Olympiads in Informatics, 1:124–130.

Mohan, A. and Gold, N. (2004). Programming 
style changes in evolving source code. In 
IEEE Proceedings of the 12th International 
Workshop on Program Comprehension, p. 
236– 240, Italy. 

Oman, P. and Cook, C. 1990. A taxonomy for 
programming style. In 18th ACM Computer 
Science Conference Proceedings, p. 244– 
250. 

Pardo, A. 2002. A multi-agent platform for au-
tomatic assignment management. ACM SI-
GCSE Bulletin, 34(3):60–64. 

Pohl, W. 2006. Computer science contests for 
secondary school students: Approaches for 
classification. Informatics in Education, 
5(1):125–132. 

Redish, K. A. and Smyth, W. F. 1986. Program 
style analysis: a natural by-product of pro-
gram compilation. Communications of the 
ACM, 29(2):126–133.

Rees, M. J. 1982. Automatic assessment aids 
for Pascal programs. ACM SIGPLAN Noti-
ces, 17(10):33–42.

Revilla, M. A., Manzoor, S., and Liu, R. 2008. 
Competitive learning in informatics: The 
Uva Online Judge experience. Olympiads in 
Informatics, 2:131–148.

Ribeiro, P. and Guerreiro, P. 2009. Improving 
the automatic evaluation of problem solu-
tions in programming contests. Olympiads 
in Informatics, 3:132–143. 

Roberts, G. B. and Verbyla, J. L. M. 2002. 
An online programming assessment tool. 
In Proceedings of Australasian Computing 
Education Conference (ACE2003), volume 

20 of Conferences in Research and Practice 
in Information Technology, p. 69–75, Ade-
laide, Australia. 

Saikkonen, R., Malmi, L., and Korhonen, A. 
2001. Fully automatic assessment of pro-
gramming exercises. In Proceedings of the 
6th annual conference on Innovation and 
technology in computer science education, 
p. 133–136, Canterbury, United Kingdom. 

Schorsch, T. 1995. CAP: An automatic selfas-
sessment tool to check pascal programs for 
syntax, logic and style errors. In Procee-
dings of the 26th SIGCSE technical sym-
posium on Computer science education, p. 
168–172, USA. 

Skienna, S. and Revilla, M. 2003. Program-
ming Challenges—the Programming 
Contest Training Manual. Springer-Verlag, 
New York. 

Skupiene, J. (2004). Testing in informatics 
olympiads (in Lithuanian). In Information 
Technologies Conference Proceedings, p. 
37–41, Kaunas. Technologija. 

Spacco, J., Strecker, J., Hovemeyer, D., and 
Pugh, W. 2005. Software repository mining 
with Marmoset: An automated programming 
project snapshot and testing system. In Pro-
ceedings of the 2005 international workshop 
on Mining software repositories, p. 1–5. 

Struble, G. 1991. Experience hosting a high 
school level programming contest. ACM SI-
GCSE Bulletin, 23(2):36–38.

Trotman, A. and Handley, C. 2006. Program-
ming contest strategy. Computers & Edu-
cation, 50(6):821–837.

Vasiga, T., Cormack, G., and Kemkes, G. 2008. 
What do olympiads tasks measure? Olympi-
ads in Infomatics, 2:181–191.

Verhoeff, T. 2009. 20 years of IOI competition 
tasks. Olympiads in Informatics, 3:149–166.

Verhoeff, T. 2006. The IOI is (not) a scien-
ce olympiad. Informatics in Education, 
5(1):147–158. 

von Matt, U. 1994. Kassandra: the automatic 
grading system. ACM SIGCUE Outlook, 
22(1):26–40.



Social Technologies. 2011, 1(2): 399–414. 413

Woit, D. M. and Mason, D. V. 1998. Lessons 
from on-line programming examinations. In 
Proceedings of the 6th annual conference on 
the teaching of computing and the 3rd annu-

al conference on Integrating technology 
into computer science education: Changing 
the delivery of computer science education,  
p. 257–259, Ireland. Dublin City University. 

PROGRAMAVIMO UŽDAVINIŲ AUTOMATINIO  
VERTINIMO GALIMYBĖS IR TAIKYMAS  

PROGRAMAVIMO VARŽYBOSE

Jūratė Skūpienė

Mykolo Romerio universitetas, Lietuva, jurate.skupiene@mruni.eu

Santrauka. Automatinis studentų sukurtų programų vertinimas yra išsamiai anali-
zuojamas moksliniuose straipsniuose jau daugelį metų. Dėstytojams pateikus pradinių kursų 
studentams programavimo užduotis tenka įvertinti gautas programas. Dažnai vertinamų 
programų skaičius didelis, todėl taikomas automatizuotas vertinimas. Su analogiška situacija 
susiduriama programavimo varžybose. Programavimo varžybos yra algoritminių uždavinių 
problemų sprendimo varžybos, kuriose dalyviai turi sukurti algoritmą, sprendžiantį duotąjį 
uždavinį, ir jį realizuoti veikiančia programa bet kuria iš varžybose numatytų programavi-
mo kalbų bei pateikti savo darbą įvertinti. 

Šio straipsnio tikslas – išanalizuoti automatinio programavimo užduočių vertinimo 
patirtį aukštosiose mokyklose ir įvertinti šios patirties tinkamumą ir perkeliamumą į progra-
mavimo varžybas.

Edukaciniai bei techniniai (suponuoti edukacinių tikslų) studentų sukurtų programų 
vertinimo tikslai labai skiriasi nuo vertinimo tikslų programavimo varžybose. Todėl uni-
versitetuose taikomi vertinimo būdai bei automatizuoto vertinimo poreikiai sąlygojo atitin-
kamų automatinių vertinimo sistemų sukūrimą. Tačiau šių sistemų funkcionalumas labai 
skiriasi nuo funkcionalumo, tinkamo informatikos varžyboms, todėl, autorės nuomone, au-
tomatizuoto studentų sukurtų programų vertinimo patirtį nėra tikslinga perkelti į progra-
mavimo varžybas. Straipsnyje išskirta viena sritis (automatizuotas programavimo stiliaus 
vertinimas), kurioje universitetų patirtis gali būti potencialiai pritaikyta varžybose.

Automatizuotas programavimo stiliaus vertinimas, taikomas kai kuriose aukštosiose 
mokyklose, gali numatyti konkretų programavimo stilių, kurio studentai turėtų laikytis. Rei-
kalavimas naudoti vienodą stilių palengvina automatizuotą vertinimą. Tuo tarpu progra-
mavimo varžybose skirtingi programavimo stiliai turėtų būti laikomi vienodai priimtinais 
ir automatizuotas vertinimas neturėtų suteikti pranašumo jokiam konkrečiam stiliui ar jų 
grupei. Tad, norint perkelti automatizuoto programavimo stiliaus vertinimo patirtį į progra-
mavimo varžybas, reikalingas atskiras tyrimas, kuris atsakytų į šiuos klausimus.

Šis straipsnis – tai tolesnis žingsnis siekiant sukurti pagrįstą ir motyvuotą programavimo 
varžybų vertinimo schemą. Straipsnyje pateikiamos konkrečios tolesnių tyrimų gairės, tad jis 
naudingas mokslininkams, atliekantiems šios tematikos tyrimus.



Jūratė Skūpienė. Automated Evaluation of Computer Programs at Undergraduate Level: Suitability Study...414

Programavimo varžybose dalyvauja daug informatika (kompiuterių mokslu) besidomin-
čių vyresniųjų klasių mokinių, ir dalyvavimas varžybose gali turėti įtakos jų pasirinkimui 
studijuoti informatiką. Yra populiaru organizuoti varžybas siekiant pritraukti potencialius 
studentus. Todėl itin svarbu, kad varžybose programų vertinimas būtų motyvuotas, pagrįstas 
ir suprantamas dalyviams, o  kartu skatinantis tobulėti. Autorės žiniomis, šis straipsnis yra 
pirmasis, nagrinėjantis automatizuoto atliktų programavimo užduočių vertinimo, taikomo 
aukštosiose mokyklose, tinkamumą programavimo varžybose. 

Raktažodžiai: automatinis vertinimas, programavimo užduotys, programavimo mo-
kymas, programavimo stilius, automatinės vertinimo sistemos, programavimo varžybos.


