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Abstract

Purpose. This study investigates the performance of advanced GARCH-family models 
in forecasting cryptocurrency volatility during extreme market conditions. It aims to deter-
mine whether volatility in major digital assets is primarily endogenous and asset-specific, 
and to identify which modelling approaches offer superior predictive accuracy across dif-
ferent volatility regimes.

Methodology. Using a Leave-One-Crisis-Out (LOCO) cross-validation framework, we 
evaluate five GARCH-type models—GARCH, EGARCH, GJR-GARCH, CS-GARCH, and 
MS-GARCH—across three major cryptocurrencies: Bitcoin (BTC), Ethereum (ETH), and 
Binance Coin (BNB). High-volatility episodes are identified using realised volatility thresh-
olds above the 90th percentile, and hyperparameters are optimised via grid search. The 
analysis spans daily data from August 2017 to June 2025, focusing exclusively on thresh-
old-based filtering after empirical evidence showed limited alignment between crypto vol-
atility and traditional financial stress indicators such as the VIX.

Findings. The results reveal that cryptocurrency volatility is largely endogenous and 
decoupled from traditional market stress, supporting the “crypto exceptionalism” hypoth-
esis. Volatility patterns are highly asset-specific, reflecting the distinct roles and market 
structures of each cryptocurrency. Regime-switching (MS-GARCH) and component 
(CS-GARCH) models consistently outperform traditional specifications in forecasting 
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accuracy, particularly for BTC and ETH. However, convergence issues in MS-GARCH for 
BNB highlight the need for model-specific diagnostics and asset-tailored approaches.

Originality. This is the first study to apply a LOCO-based stress-testing framework 
to evaluate GARCH-family models under extreme cryptocurrency market conditions. It 
contributes to the literature by demonstrating the limitations of traditional financial stress 
indicators in crypto volatility modelling, highlighting the heterogeneous nature of digital 
asset dynamics, and offering a robust methodology for volatility forecasting in high-risk, 
rapidly evolving markets during extreme market conditions.

Keywords: Cryptocurrency volatility, GARCH models, Regime-switching, Volatility 
forecasting, Extreme market conditions.

JEL index: C22, C53, G17

1. Introduction

The cryptocurrency market’s emergence as a distinct asset class has fundamentally 
challenged traditional approaches to volatility modeling and risk assessment. While con-
ventional financial theory suggests that asset volatility should exhibit co-movement during 
periods of market stress, cryptocurrency markets have repeatedly demonstrated their ca-
pacity to experience extreme volatility episodes that are largely decoupled from traditional 
financial market indicators. This phenomenon was starkly illustrated during the March 
2020 COVID-19 crash, when Bitcoin plummeted over 50% in a single day—from approxi-
mately $8,000 to $3,800—yet subsequent cryptocurrency-specific crises, such as the Terra/
LUNA collapse in May 2022 and the FTX bankruptcy in November 2022, occurred inde-
pendently of broader financial market stress.

Unlike traditional assets, cryptocurrency volatility is largely decoupled from conven-
tional market stress indicators such as the VIX index, credit spreads, or equity market vola-
tility. This disconnect suggests that the standard toolkit of volatility forecasting models, de-
veloped and validated on traditional financial assets, may be inadequate for capturing the 
unique dynamics of digital asset markets. The conventional approach of using broad-based 
financial stress indicators to identify extreme market conditions—while effective for equity 
and bond markets—fails to account for the idiosyncratic nature of cryptocurrency vola-
tility clustering, which is often driven by protocol upgrades, exchange failures, regulatory 
announcements, and ecosystem-specific events rather than macroeconomic fundamentals.

The challenge of forecasting cryptocurrency volatility during extreme market con-
ditions is further complicated by the heterogeneous nature of different digital assets. 
While Bitcoin’s volatility patterns may reflect its role as a “digital gold” and store of value, 
Ethereum’s volatility is influenced by its position as the backbone of decentralized finance 
(DeFi), and exchange tokens like Binance Coin (BNB) exhibit volatility patterns tied to 
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platform-specific developments. This asset-specific heterogeneity necessitates a departure 
from the one-size-fits-all approach commonly employed in traditional finance, where cor-
relation structures remain relatively stable across different equity securities or sovereign 
bonds.

In response to these challenges, this study employs asset-specific extreme period iden-
tification to reflect the unique nature of crypto markets. Rather than relying on external 
stress indicators or predetermined crisis dates, we identify high-volatility episodes using 
realized volatility thresholds calibrated to each cryptocurrency’s individual return distribu-
tion. This approach recognizes that what constitutes an “extreme” market condition varies 
significantly across different digital assets and may not coincide with stress in traditional 
financial markets. For Bitcoin, Ethereum, and Binance Coin, we identify the three longest 
high-volatility periods occurring after 2019, ensuring our analysis captures recent market 
dynamics while providing sufficient variation in market conditions for robust model com-
parison.

The methodological contribution of this research lies in our application of Leave-One-
Crisis-Out (LOCO) cross-validation, a technique specifically designed for stress-testing fi-
nancial models under realistic forecasting constraints. Our LOCO validation reveals model 
performance across different cryptocurrency volatility regimes by systematically excluding 
each identified high-volatility episode from the training data and using it exclusively for 
out-of-sample evaluation. This approach simulates the realistic scenario faced by risk man-
agers and portfolio optimizers, where future market stress episodes are unknown during 
model estimation. Unlike traditional time-series cross-validation techniques that may in-
advertently incorporate look-ahead bias, LOCO ensures that model performance is evalu-
ated on genuinely unseen data, providing more reliable guidance for practical applications.

The empirical analysis encompasses six advanced GARCH specifications: AR-GARCH, 
MS-GARCH, EGARCH, GJR-GARCH, FIGARCH, and CS-GARCH. These models rep-
resent the current state-of-the-art in volatility modelling, incorporating features such 
as asymmetric responses to positive and negative shocks (EGARCH, GJR-GARCH), 
long-memory dynamics (FIGARCH), regime-switching behaviour (MS-GARCH), and 
component structures that separately model short-term and long-term volatility compo-
nents (CS-GARCH). The comparative evaluation of these specifications provides insights 
into which modelling approaches are most effective for capturing the complex volatility 
dynamics exhibited by cryptocurrency markets during periods of extreme stress.

Research Problem. The central research problem addresses a fundamental gap in vol-
atility forecasting literature: existing GARCH-type models, developed and validated on 
traditional financial assets, may be inadequate for cryptocurrency markets due to their 
unique volatility dynamics and decoupling from conventional financial stress indicators. 
This creates a critical challenge for risk managers, portfolio optimizers, and regulators who 
require accurate volatility forecasts during the most turbulent market conditions—precise-
ly when model performance matters most. The problem is compounded by the heteroge-
neous nature of different cryptocurrencies, each exhibiting distinct volatility patterns that 
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may require asset-specific modelling approaches.
Specifically, the research problem can be formulated as follows: How do advanced 

GARCH specifications perform in forecasting cryptocurrency volatility during extreme 
market conditions, and which modelling approaches demonstrate superior predictive ac-
curacy across different digital assets and volatility regimes?

To address this research problem systematically, we investigate three interrelated re-
search questions:

RQ1: Endogeneity of Cryptocurrency Volatility To what extent is cryptocurrency 
volatility endogenous and driven by crypto-specific factors rather than traditional financial 
market stress indicators?

This question examines the fundamental assumption underlying most volatility fore-
casting frameworks—that asset volatility should exhibit co-movement during market 
stress. If cryptocurrency volatility is primarily driven by idiosyncratic factors (protocol 
changes, exchange failures, regulatory announcements), then models incorporating tradi-
tional financial stress indicators may provide little forecasting value.

RQ2: Asset-Specific Volatility Dynamics Do Bitcoin, Ethereum, and Binance Coin ex-
hibit unique extreme volatility periods that reflect their distinct market roles and underlying 
fundamentals?

This question investigates whether the “one-size-fits-all” approach common in tradi-
tional finance is appropriate for cryptocurrency markets. Different digital assets serve dif-
ferent functions (store of value, smart contract platform, exchange utility token), which 
may result in distinct volatility patterns requiring asset-specific modelling approaches.

RQ3: Cross-Asset Model Robustness Which GARCH-type specifications demonstrate 
consistent forecasting performance across different cryptocurrencies and volatility regimes?

This question addresses the practical challenge of model selection in cryptocurrency 
risk management. Given the computational and operational costs of maintaining multiple 
modelling frameworks, identifying specifications that perform robustly across different as-
sets and market conditions is crucial for practical implementation.

The findings of this study have significant implications for multiple stakeholders in 
the evolving cryptocurrency ecosystem. For academic researchers, our results contribute 
to the growing literature on digital asset pricing and risk modelling by providing evidence 
on the relative efficacy of different volatility forecasting approaches during extreme market 
conditions. For practitioners, including portfolio managers, risk officers, and proprietary 
trading firms, our analysis offers practical guidance on model selection for volatility fore-
casting in cryptocurrency markets. For regulators and policymakers, our findings inform 
the development of appropriate risk assessment frameworks for digital assets, highlighting 
the inadequacy of traditional financial stability indicators for monitoring cryptocurrency 
market stress.

The remainder of this paper is organised as follows. Section 2 reviews the relevant lit-
erature on cryptocurrency volatility modelling. Section 3 describes our data, the identifi-
cation of extreme market conditions, and the LOCO cross-validation methodology, which 
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provides the GARCH model’s specification. Section 4 reports our empirical findings, in-
cluding model performance comparisons and convergence diagnostics. Section 5 discusses 
the implications of our results for theory and practice, Section 6 provides limitations, while 
Section 7 concludes with suggestions for future research directions.

2. Literature Review

The unique volatility dynamics of cryptocurrencies, characterised by extreme jumps of-
ten decoupled from traditional financial stress indicators, present significant challenges for 
forecasting models developed primarily for traditional assets (Ahmed et al., 2024; Naimy 
et al., 2021; Chernova et al., 2024). While GARCH family models remain the dominant 
econometric framework for modelling volatility clustering in financial time series (Boller-
slev, 1986), their application and comparative performance, specifically during crypto-
currency-specific extreme events, require deeper investigation, particularly across diverse 
digital assets like BTC, ETH, and Binance BNB. This review critically examines the existing 
literature, highlighting key advancements and persistent gaps that motivate the present 
study›s focus on asset-specific extreme period identification and rigorous stress-testing via 
LOCO validation.

Research consistently confirms that cryptocurrency volatility exhibits distinct charac-
teristics compared to traditional assets, including pronounced long memory, asymmetric 
leverage effects (often inverse), and heavy-tailed return distributions (Subramoney et al., 
2025; Su, 2014). This distinctiveness challenges the assumption that traditional financial 
stress indicators like the VIX effectively capture extreme conditions in crypto markets. 
Studies examining volatility co-movement, such as Tzeng & Su, (2024); Ullah et al., (2020), 
find that while some U.S. macroeconomic indicators (e.g., consumer confidence, CPI) pos-
sess predictive power for crypto volatility, their influence is often asset-specific and peri-
od-dependent, particularly strengthening post-COVID-19. Crucially, Naimy et al., (2021) 
demonstrated significant differences in optimal GARCH specifications (e.g., IGARCH for 
world currencies vs. GJR-GARCH/CGARCH for cryptos) and highlighted the poor VaR 
performance of even “optimal” models for major coins like Bitcoin and Ripple during stress 
periods, underscoring the inadequacy of traditional frameworks. This supports the core 
premise of the current study that cryptocurrency volatility during crises is frequently en-
dogenous, driven by ecosystem-specific events (exchange failures, protocol changes, regu-
latory shocks) rather than broad financial market stress.

Consequently, defining “extreme market conditions” for cryptocurrencies requires 
methodologies beyond conventional index-based filtering. While some studies incorporate 
realised volatility thresholds (Ampountolas, 2022), they often lack alignment with identi-
fiable crypto-specific crises or fail to adopt rigorous out-of-sample testing protocols de-
signed specifically for stress periods. The common practice of including crisis periods with-
in the training data or using standard rolling-window back tests introduces look-ahead 
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bias and fails to simulate the true forecasting challenge faced by risk managers when novel, 
unforeseen crises erupt (Dudek et al., 2024; Queiroz & David, 2023). The LOCO method-
ology, while established in some traditional finance contexts for regulatory stress-testing 
(e.g., Basel frameworks), remains notably underutilised in cryptocurrency volatility fore-
casting research. Its application, as proposed in the current study, systematically isolates 
each major crisis for exclusive out-of-sample testing, represents a significant methodologi-
cal advancement for assessing genuine model robustness under duress.

Comparative evaluations of GARCH-type models for crypto volatility are abundant 
but exhibit critical limitations relevant to this study. Several focus predominantly on Bit-
coin (Wang, 2023; Pourrezaee & Hajizadeh, 2024; Boozary et al., 2025), neglecting the het-
erogeneous volatility dynamics of other major assets like Ethereum (the DeFi backbone) 
and BNB (an exchange token tied to platform-specific events). Studies incorporating mul-
tiple assets, such as Naimy et al. (2021) and Ampountolas (2022), often report divergent 
“best” models (e.g., IGARCH for Monero, GJR-GARCH/CGARCH for others) but typical-
ly evaluate performance over general periods, not explicitly contrasting model efficacy dur-
ing identified extreme events. Furthermore, while advanced specifications like MS-GARCH 
(regime-switching), CS-GARCH (component structure), and FIGARCH (long memory) 
are recognised for their theoretical suitability to capture crypto stylised facts (Subramoney 
et al., 2025; Su, 2014), their empirical performance and crucially, their estimation robust-
ness  (convergence stability) during extreme crypto-specific stress, particularly for assets 
beyond Bitcoin, are insufficiently explored. Studies like Queiroz et al. (2023) advocate for 
Realised-GARCH using intraday data in out-of-sample contexts, while Subramoney et 
al. (2025) highlight FIAPARCH with heavy-tailed innovations, yet neither explicitly tests 
these models through isolated crisis episodes using a LOCO framework. The frequent con-
vergence failures of complex models like MS-GARCH for certain assets, noted anecdotally 
but rarely systematically diagnosed or reported (as planned in the current study for BNB), 
represent a significant practical hurdle overlooked in much literature.

The rise of machine learning (ML) and deep learning (DL) models offers alternative 
forecasting avenues (Zubair et al., 2024; Zhang et al., 2021; Abarghouie et al., 2024; Rod-
rigues & Machado, 2025). While demonstrating promising accuracy, often surpassing 
GARCH in some studies (Wang, 2023; Dudek et al., 2024; AlMadany et al., 2024), these 
“black-box” models pose interpretability challenges crucial for risk management and regu-
latory compliance. Hybrid approaches combining econometric foundations with ML (e.g., 
GARCH-LSTM: AlMadany et al., 2024) are emerging but add complexity. Furthermore, 
ML/DL studies often rely on vast datasets and computational resources, and crucially, their 
performance evaluation during  isolated, unforeseen extreme events  using methodologies 
like LOCO is equally scarce. Bibliometric analyses by Pečiulis et al., (2024) and Ruiz Roque 
da Silva et al., (2022) confirm the dominance of volatility forecasting and machine learning 
themes but also highlight the persistent focus on major coins and the need for more sophis-
ticated validation techniques.

Collectively, the literature reveals a critical gap: a lack of rigorous, comparative 
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assessment of advanced GARCH specifications  specifically during isolated, cryptocurren-
cy-defined extreme market conditions across the major yet functionally distinct assets BTC, 
ETH, and BNB. Existing studies often rely on conventional crisis definitions or index 
thresholds, inadequately test models on genuinely unseen crisis data (lacking robust meth-
odologies like LOCO), and insufficiently address the practical challenges of model conver-
gence and stability during stress, especially for complex models and less-dominant coins 
like BNB. This study directly addresses this gap by: (1) employing an asset-specific, real-
ized-volatility and event-aligned definition of extreme periods; (2) implementing a strin-
gent LOCO cross-validation framework to ensure pure out-of-sample testing during crises; 
and (3) providing a comprehensive performance and robustness (including convergence 
diagnostics) evaluation of six advanced GARCH models (AR-GARCH, MS-GARCH (Haas 
et al., 2004), EGARCH (Nelson, 1991), GJR-GARCH (Glosten et al., 1993), FIGARCH 
(Baillie et al., 1996), CS-GARCH (Conrad & Loch, 2015)) across these three key crypto-
currencies during their most significant post-2019 stress events. This approach offers novel 
insights into model suitability for practical risk management under the most challenging 
conditions unique to the cryptocurrency market.

3.Methodology

This section outlines the empirical strategy employed to evaluate the performance of 
various GARCH-type models in forecasting cryptocurrency volatility. The methodological 
framework is designed to ensure consistency, robustness, and comparability across assets 
and model specifications. It begins with a detailed description of the data sources, preproc-
essing steps, and return transformations. Subsequently, the section introduces the suite 
of volatility models under consideration, including both standard and advanced GARCH 
variants. Each model is estimated using maximum likelihood techniques, and their predic-
tive accuracy is assessed through a rigorous out-of-sample evaluation.

3.1. Data description

Daily closing prices for BTC, ETH, and BNB were retrieved from Yahoo Finance us-
ing the yfinance Python package. The sample period extends from 11 August 2017 to 31 
December 2024. This timeframe was deliberately selected to ensure the inclusion of all 
three cryptocurrencies from their earliest common availability, thereby maximizing data 
coverage while preserving consistency across assets. Although Bitcoin has a longer trading 
history, aligning the start date with the earliest available data for BNB mitigates survivor-
ship bias and enhances the comparability of results across assets, as emphasized in prior 
literature (Grobys & Sapkota, 2020; Stambaugh, 2011).

To prepare the data for volatility modelling, daily prices were transformed into con-
tinuously compounded returns using the natural logarithm of price relatives. This 
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transformation is standard in financial econometrics, as it stabilizes the variance and fa-
cilitates the assumption of conditional normality in GARCH-type models (Tsay, 2010). 
The resulting return series were then used to compute realized volatility, which serves as a 
non-parametric benchmark for evaluating model performance. Realized volatility was esti-
mated using a 30-day rolling window of standard deviations, scaled by the square root of 30 
to annualize the measure. Formally, for each day σ̂t, the realized volatility  is computed as:

σ̂ₜ = √30 ⋅ SD(rₜ₋₂₉,…,rₜ)

where rₜ denotes the daily log return. This approach captures the local variability in returns 
and provides a robust proxy for latent volatility, which is particularly valuable in assessing 
the out-of-sample forecasting accuracy of competing GARCH specifications.

For model estimation and evaluation, the dataset was partitioned into a training set 
comprising 80% of the observations and a test set comprising the remaining 20%. This 
division facilitates both in-sample calibration and out-of-sample validation, allowing for a 
rigorous comparison of model performance under realistic forecasting conditions. The two 
best-performing models, as determined by their average RMSE, MAE, and AIC across as-
sets and periods, were subjected to deeper analysis in the test set to assess their robustness 
and predictive reliability.

Table 1. Major Cryptocurrency Market Events (2020–2025)
Period Event Description Market Impact
March 
12–13, 
2020

COVID-19 Crash 
(“Black Thursday”)

Bitcoin fell over 50% in a single day, from approximately 
$8,000 to $3,800, amid a global liquidity crisis and 
widespread asset sell-offs.

May 2022 Terra/LUNA 
Collapse

The algorithmic stablecoin UST lost its peg, triggering a 
“death spiral” that wiped out over $50 billion in market 
value and destabilized the broader DeFi ecosystem 

November 
2022

FTX Collapse One of the largest centralized crypto exchanges filed 
for bankruptcy, leading to sharp declines in BTC and 
ETH prices due to contagion fears and loss of investor 
confidence.

February 
2024

Mt. Gox 
Repayment & Hack 
Fallout

The long-awaited release of BTC from Mt. Gox repay-
ments, combined with a major hack, led to panic selling 
and a sharp market correction.

Q1 2025 Bybit Hack, ETF 
Outflows, and Fed 
Policy Uncertainty

BTC dropped from $109,600 to $74,500 (−32%) amid 
a confluence of negative catalysts, including a major 
exchange hack, institutional ETF outflows, and macroe-
conomic uncertainty.

Source: The authors
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The events listed in the Table 1 were selected based on their systemic relevance, mag-
nitude of market disruption, and alignment with the literature on financial contagion, 
structural breaks, and crisis-induced volatility. Each event represents a significant exog-
enous shock to the cryptocurrency ecosystem, either through macro-financial contagion 
(e.g., COVID-19), protocol failure (e.g., Terra/LUNA), institutional collapse (e.g., FTX), or 
large-scale asset redistribution (e.g., Mt. Gox repayments). These events are consistent with 
the typology of financial crises described by Reinhart & Rogoff, (2009), and their inclusion 
is motivated by the need to assess model robustness under extreme market conditions.

The Terra/LUNA collapse in particular has been extensively analysed in academic liter-
ature as a case of financial fragility in decentralised systems. Liu et al., (2023)describe it as 
the first major run in crypto markets, highlighting the role of pseudonymous transparency 
and reflexive investor behaviour in accelerating the collapse. Similarly, the FTX bankruptcy 
in late 2022 marked a critical turning point in centralised exchange risk, with widespread 
implications for market structure and investor trust (Fu et al., 2023).

To evaluate the robustness of volatility forecasting models under extreme market con-
ditions, this study adopts a LOCO framework. LOCO is a variant of cross-validation spe-
cifically designed for time series and financial stress testing. In this approach, each iden-
tified high-volatility period—interpreted as a “crisis”—is systematically excluded from the 
training data and used exclusively for out-of-sample testing. This ensures that the model is 
not exposed to any information from the crisis period during training, thereby simulating 
a realistic forecasting scenario where future shocks are unknown.

Table 2. LOCO Training and Test Periods for Longest High-Volatility Episodes (2019–
2025)

Asset Training 
Start

Training End Training 
Duration 

(days)

Start Date End Date Test 
Duration

BTC 2017-08-01 2021-02-04 1,283 days 2021-02-05 2021-07-12 158 days
2017-08-01 2020-03-11 953 days 2020-03-12 2020-04-17 37 days
2017-08-01 2020-09-11 1,137 days 2020-09-12 2020-10-05 24 days

ETH 2017-08-01 2021-05-14 1,382 days 2021-05-15 2021-07-08 55 days
2017-08-01 2021-01-20 1,268 days 2021-01-21 2021-03-09 48 days
2017-08-01 2019-06-26 694 days 2019-06-27 2019-08-12 47 days

BNB 2017-08-01 2021-01-02 1,250 days 2021-01-03 2021-02-19 48 days
2017-08-01 2021-05-13 1,381 days 2021-05-14 2021-06-29 47 days
2017-08-01 2020-03-11 953 days 2020-03-12 2020-04-17 37 days

Source: The authors
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We identify the three longest high-volatility periods for each of the three major cryp-
tocurrencies: BTC, ETH, and BNB, using realised volatility thresholds above the 90th per-
centile. The analysis is restricted to the post-2019 period to reflect recent market dynamics. 
For each high-volatility episode, the training set begins at the start of the dataset (August 
1, 2017) and ends one day prior to the onset of the crisis. For example, the longest BTC 
high-volatility period spans from February 5, 2021, to July 12, 2021, lasting 158 days, with 
a corresponding training period of 1,283 days ending on February 4, 2021. Similarly, ETH 
experienced a 55-day high-volatility stretch from May 15 to July 8, 2021, preceded by a 
1,382-day training window. BNB’s longest episode occurred from January 3 to February 19, 
2021, with a 48-day test period and a 1,250-day training span (See Table 2).

We did not include event-based or index-based filtering since crypto markets have id-
iosyncratic volatility patterns unrelated to traditional financial stress (see results section).

This LOCO setup allows for rigorous out-of-sample validation, ensuring that model 
performance is assessed on genuinely unseen data. It also facilitates comparative analysis 
across assets and timeframes, offering insights into how models generalise across different 
types of market stress.

Despite the theoretical appeal of incorporating event-based filtering into the modelling 
framework, our empirical analysis revealed a lack of consistent overlap between these ma-
jor market events and the periods of statistically defined high volatility. Specifically, real-
ized volatility—computed using a 30-day rolling standard deviation—did not consistently 
spike in alignment with the event dates across all assets. This suggests that cryptocurrency 
volatility is often driven by idiosyncratic, endogenous factors rather than by identifiable 
macro or institutional shocks.

This finding aligns with recent research emphasising the unique behavioural and struc-
tural dynamics of crypto markets, where volatility is frequently decoupled from traditional 
financial stress indicators (Corbet et al., 2019; Y. Liu et al., 2022). As a result, we opted 
not to include event-based filtering in the final model architecture. Instead, we relied on a 
data-driven approach using realised volatility thresholds to define high-volatility regimes. 
This ensures that the model evaluation remains grounded in observable market behaviour 
rather than ex-post event classification, thereby enhancing the objectivity and replicability 
of our results.

2.2 Model architecture

In preparation for model estimation, a comprehensive suite of diagnostic tests was con-
ducted to assess the statistical properties of the return series (See Table 3). Stationarity was 
evaluated using the ADF test, which confirmed the absence of unit roots in all series, there-
by validating the use of GARCH-type models. To examine the presence of volatility cluster-
ing—a hallmark of financial time series—the Ljung-Box test was applied to squared returns 
with 10 lag, complemented by the ARCH-LM test, which specifically tests for autoregres-
sive conditional heteroskedasticity. Both tests provided strong evidence of time-varying 
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volatility, justifying the use of conditional variance models.

Table 3. Data diagnostic tests
Diagnostic 
Objective

Test Applied Reference Notes

Stationarity Augmented Dickey-
Fuller (ADF) Test

(Dickey & Fuller, 
1979)

Assesses the presence 
of unit roots in return 
series

Autocorrelation Ljung-Box Test (10 
lags) on squared 
returns

(Ljung & Box, 1978) Detects autocorrelation 
in squared returns

Volatility 
Clustering

ARCH-LM Test (10 
lags)

(Engle, 1982) Tests for autore-
gressive conditional 
heteroskedasticity

Normality Jarque-Bera Test (Jarque & Bera, 1987) Evaluates skewness 
and kurtosis relative to 
normal distribution

Structural Breaks Mean 30-day rolling 
variance

Identifies multiple 
structural changes in 
the variance

Source: The authors

Normality was assessed using the Jarque-Bera test (Jarque & Bera, 1987), which re-
vealed significant departures from Gaussianity, consistent with the heavy tails and skew-
ness commonly observed in cryptocurrency returns. Structural breaks were investigated 
using the Mean 30-day rolling variance identified several statistically significant shifts in 
the return-generating process, further motivating the inclusion of regime-switching and 
component-based GARCH models in the analysis. 

To estimate the suite of GARCH-type models, this study employed the rug arch pack-
age in R and the arch package in Python, which provides a flexible and robust framework 
for specifying, estimating, and forecasting a wide range of univariate GARCH models. The 
mean equation was modelled using an ARMA(p,q) process by checking different combina-
tions of hyperparameters (up till 10th lag). This approach ensures that the conditional mean 
dynamics are adequately captured prior to modelling the conditional variance.

For the volatility component, a grid search was conducted over ARCH and GARCH 
lag orders, with  p,q∈[1,5]p,q∈[1,5], to identify the optimal lag structure for each mod-
el specification. This exhaustive search strategy allows for a systematic exploration of the 
model space while maintaining computational feasibility. To account for the heavy tails 
and potential asymmetry commonly observed in cryptocurrency return distributions, four 
alternative error distributions were considered: normal, Student’s t, skewed Student’s t, and 
the generalised error distribution (GED). This flexibility in distributional assumptions 
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enhances the robustness of the volatility forecasts.
Model in-sample selection was guided by the Akaike Information Criterion (AIC). The 

criteria weas computed for each candidate model, and the specification with the lowest 
AIC was retained for further analysis. To evaluate out-of-sample forecasting performance, 
a rolling window cross-validation procedure was implemented. Specifically, models were 
re-estimated over a moving training window, and forecasts were generated for the subse-
quent period. Forecast accuracy was assessed using two standard loss functions: the root 
mean squared error (RMSE) and the mean absolute error (MAE). This rolling evaluation 
framework provides a realistic approximation of real-time forecasting conditions and al-
lows for a robust comparison of model performance across different market regimes (see 
Table 4).

Table 4. Model Estimation and Validation Procedures
Component Methodology Reference(s)

Estimation Framework
rug arch package in R
arch package in python (Ghalanos, 2022)

Mean Equation ARMA(p,q) orders selected via 

Volatility Equation
Grid search over ARCH/GARCH lags 
p,q∈[1,5]p,q∈[1,5] —

Error Distributions Normal, Student’s t, Skewed t, GED —
Model Selection AIC for balancing fit and parsimony (Akaike, 1974)

Source: The authors

Together, these procedures ensure that the model estimation process is both statistical-
ly rigorous and empirically grounded, aligning with best practices in financial economet-
rics and the specific challenges posed by high-frequency cryptocurrency data.

We use this GARCH model:
      (1)

where:
  is the conditional variance at time t;
Ω is a constant volatility baseline;
α: ARCH term;
β: GARCH term (persistence of volatility);

The GARCH model extends the ARCH framework by incorporating lagged condition-
al variance, enabling parsimonious modelling of volatility clustering. Defined by Equation 
(1), it captures persistence in volatility through the GARCH term (β) and responsiveness 
to shocks via the ARCH term (α). The intercept (ω) represents baseline volatility. While 
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computationally efficient and widely applicable, GARCH assumes symmetric responses to 
positive and negative shocks, limiting its utility in markets with leverage effects. It remains 
a baseline choice for volatility forecasting in the absence of asymmetry or structural breaks.

We used this EGARCH model:
   (2)

where:
γ is a leverage effect term (asymmetric response to shocks).

The EGARCH model, formalized in Equation (2), introduces asymmetry via the lev-
erage parameter (γ), which differentiates the impact of positive and negative shocks on 
volatility. By modelling the logarithm of conditional variance, EGARCH ensures non-neg-
ativity without parameter constraints. This model is particularly suited for financial mar-
kets where “bad news” amplifies volatility more than “good news.” However, the log-trans-
formation complicates direct interpretation of coefficients, and estimation requires robust 
numerical methods.

We used this GJR-GARCH model:

    (3)

where:
 is a dummy = 1 if   < 0, else 0.

The GJR-GARCH in Equation (3) incorporates asymmetry through a dummy varia-
ble, which activates an additional volatility response (γ) to negative shocks. This thresh-
old-based approach explicitly quantifies the differential impact of market downturns, mak-
ing it ideal for equity or crisis-prone markets. While intuitive, GJR-GARCH may overfit in 
small samples due to its discrete treatment of shocks and is less flexible than EGARCH in 
capturing smooth asymmetry.

We used this FIGARCH model:
   (4)

where:
L is a lag operator;
D is a fractional integration parameter.

The FIGARCH in Equation (4) addresses long memory in volatility by employing a 
fractional differencing parameter (d) within the lag operator (L) framework. This allows 
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volatility shocks to decay hyperbolically rather than exponentially, accommodating pro-
longed persistence observed in macroeconomic or commodity markets. However, its com-
putational complexity and sensitivity to misspecification of the fractional parameter limit 
its practicality for high-frequency data.

We used this MSGARCH model:
     (5)

where:
  It is an unobserved state (regime) at t.

MSGARCH in Equation (5) allows parameters (ω,α,β) to shift across unobserved re-
gimes, capturing abrupt volatility changes caused by structural breaks or policy shifts. This 
model is indispensable for analyzing crises or regime-dependent markets but demands 
large datasets for stable regime identification and imposes heavy computational burdens 
due to latent state estimation.

We used this CS-GARCH model:
   (6)

    (7)
 
where:

 It is a long-run volatility component.
CS-GARCH in Equations (6)-(7) decomposes volatility into transient and persistent 

components, where   evolves via a separate autoregressive process. This separation en-
hances forecasting accuracy for long-term volatility trends, such as inflation or interest 
rates. However, the dual-equation structure increases model complexity and estimation 
time.

4. Results

This section presents the empirical findings from our comparative evaluation of ad-
vanced GARCH-family models applied to cryptocurrency volatility forecasting during ex-
treme market conditions. Using a comprehensive dataset spanning August 2017 to June 
2025, we assess model performance across four major cryptocurrencies—BTC, ETH, and 
BNB. To ensure methodological consistency and computational feasibility, ARMA mean 
dynamics were varied only for standard GARCH models, while more complex specifica-
tions were held constant in their mean structure. The analysis focuses on out-of-sample 
forecasting accuracy during high-volatility episodes identified through LOCO framework. 
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This approach enables a rigorous, asset-specific comparison of model performance under 
stress, offering insights into the relative strengths and limitations of traditional, asymmet-
ric, component, and regime-switching volatility models in the context of cryptocurrency 
markets.

Figure 1 depicts the realised volatility of BTC from August 2017 to June 2025, overlaid 
with the VIX index to contextualise global market sentiment. The 90th percentile threshold 
for BTC volatility, calculated at approximately 0.37, is used to demarcate extreme volatility 
regimes. Periods exceeding this threshold are shaded in red, while more stable periods are 
shaded in blue. Major crypto-specific events are annotated with triangular markers and 
rotated labels for clarity. The VIX index is plotted on a secondary y-axis, and its mean level 
across the sample is approximately 19.47.

Figure 1. BTC Realised Volatility with Major Events and VIX index
Source: The authors

A key observation is the lack of consistent overlap between spikes in BTC volatility and 
peaks in the VIX index. The only clear exception is the COVID-19 crash in March 2020. 
On March 12, 2020, BTC realised volatility surged to 0.48, the highest in the dataset, while 
the VIX simultaneously peaked at 75.47—its highest level since the 2008 financial crisis. 
This synchronous spike reflects a rare convergence of systemic financial stress and crypto 
market panic, likely driven by global liquidity shocks and widespread deleveraging.

In contrast, other major crypto events such as the Terra/LUNA collapse (May 2022), 
the FTX bankruptcy (November 2022), and the Mt. Gox repayment (February 2024) did 
not elicit comparable volatility responses in BTC. For instance, during the Terra/LUNA 
collapse, BTC volatility reached only 0.16—well below the extreme threshold—while 
the VIX remained at its long-term average of 19.47. Similarly, the FTX collapse saw BTC 
volatility at 0.10 and the VIX at 25.81, indicating a modest reaction in both crypto and 
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traditional markets. The muted volatility response to these events suggests that, despite 
their significance within the crypto ecosystem, they did not trigger broader systemic risk 
or investor panic.

The Bybit hack and ETF outflows in early 2025 also failed to produce a substantial 
volatility spike, with BTC volatility at 0.21 and the VIX remaining anchored at 19.47. This 
further supports the inference that BTC volatility is increasingly decoupled from isolated 
crypto events, possibly due to improved market maturity, deeper liquidity, or more robust 
investor expectations.

An important historical anomaly was observed in early 2018. Between January and 
February 2018, BTC realised volatility experienced a pronounced spike, exceeding 0.40. 
This period corresponds to the aftermath of the 2017 bull market and the subsequent reg-
ulatory crackdown in Asia, particularly China and South Korea. The sharp correction in 
BTC prices, combined with heightened regulatory uncertainty, likely contributed to this 
volatility surge. Notably, the VIX index during this period remained subdued, averaging 
around 15–20, indicating that the volatility was confined to the crypto domain and not 
reflective of broader financial market stress.

Figure 2. ETH Realised Volatility with Major Events and VIX index
Source: The authors

In summary, the graph reveals that BTC volatility is largely endogenous and event-spe-
cific, with limited sensitivity to broader market sentiment as captured by the VIX index. 
The COVID-19 crash remains the only event where crypto and traditional market volatil-
ities aligned. This decoupling suggests that BTC, while volatile, is increasingly insulated 
from global macro shocks—except in cases of extreme systemic stress. These findings have 
implications for volatility forecasting and risk management in crypto-asset portfolios.

Figure 2 shows the realised   volatility of ETH from August 2017 to June 2025 reveals 
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a pattern of event-specific but relatively muted responses to major crypto and macroe-
conomic shocks. The 90th percentile threshold for ETH volatility is approximately 0.32, 
lower than BTC’s 0.37 and BNB’s 0.34, indicating a generally more stable volatility profile.

ETH volatility exhibits a pronounced spike during the COVID-19 crash in March 2020, 
reaching 0.45, closely aligned with the VIX peak of 75.47. This is the only event where 
ETH, BTC, and BNB all show synchronised volatility surges with global market stress. Out-
side of this, ETH’s volatility responses are notably subdued. During the Terra/LUNA col-
lapse in May 2022, ETH volatility was 0.15, well below the extreme threshold, and the VIX 
remained at its long-term mean of 19.47. Similarly, the FTX collapse in November 2022 
saw ETH volatility at 0.12, compared to BTC’s 0.10 and BNB’s 0.11, with the VIX at 25.81.

In early 2025, amid the Bybit hack and ETF outflows, ETH volatility reached  0.18, 
again below the 90th percentile, while BTC and BNB showed slightly stronger reactions 
at  0.21  and  0.20, respectively. This suggests that ETH is less reactive to crypto-native 
shocks than BTC and BNB, possibly due to its broader utility base and more diversified 
investor profile.

A notable exception is early 2018, where ETH volatility exceeded  0.40, coinciding 
with the post-ICO market correction and regulatory crackdowns in Asia. This mirrors 
similar spikes in BTC and BNB, though ETH’s volatility remained slightly lower than 
BTC’s 0.44 and BNB’s 0.42 during the same period.

Figure 3 presents realised volatility BNB from August 2017 to June 2025 reveals a dis-
tinct profile compared to ETH and BTC, both in magnitude and responsiveness to market 
events. The 90th percentile threshold for BNB volatility is approximately 0.34, placing it 
between ETH (0.32) and BTC (0.37), yet its behaviour diverges in notable ways.

BNB exhibits a pronounced volatility spike during the COVID-19 crash in March 2020, 
reaching 0.46, closely aligned with BTC (0.48) and ETH (0.45), and coinciding with the 
VIX peak of 75.47. This event remains the only instance where all three cryptocurrencies 
and the VIX index exhibit synchronised volatility surges, reflecting a global systemic shock.

However, beyond this point, BNB’s volatility profile diverges. During the Terra/LUNA 
collapse  in May 2022, BNB volatility reached 0.14, slightly below ETH (0.15) and BTC 
(0.16), despite Binance’s direct exposure to the DeFi ecosystem. This suggests that BNB’s 
volatility is not necessarily amplified by its platform’s involvement in ecosystem-wide dis-
ruptions.

In November 2022, during the FTX collapse, BNB volatility was 0.11, nearly identical 
to BTC (0.10) and ETH (0.12), despite Binance’s central role in the unfolding of the event. 
This muted response may reflect investor confidence in Binance’s relative stability or a lag 
in volatility transmission due to centralised exchange dynamics.
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Figure 3. BNB Realised Volatility with Major Events and VIX index
Source: The authors

The Bybit hack and ETF outflows  in early 2025 saw BNB volatility at 0.20, slightly 
below BTC (0.21) and above ETH (0.18). This suggests that BNB may be more sensitive to 
exchange-related events than ETH, but still less reactive than BTC, which often serves as 
the market’s volatility benchmark.

A unique feature of BNB’s volatility history is its early 2018 spike, where volatility ex-
ceeded 0.42. This aligns with the broader crypto market correction following the 2017 bull 
run, but BNB’s spike is particularly sharp given its relatively nascent status at the time. The 
volatility surge likely reflects speculative trading and the rapid expansion of Binance as a 
platform, which introduced heightened sensitivity to market sentiment.

In contrast to BTC and ETH, BNB’s volatility appears more episodic and less structur-
ally persistent. While BTC shows broader volatility clusters and ETH exhibits smoother 
transitions, BNB’s volatility spikes are sharper and more isolated. This may be attributed 
to its dual role as both a tradable asset and a utility token within the Binance ecosystem, 
which can buffer or amplify volatility depending on platform dynamics.

Table 5. ADF test statistics and critical values for BTC, ETH, and BNB return series 
under full sample and extreme volatility conditions.

Cryptocurrency ADF Statistic 
(Full)

p-value (Full) ADF Statistic 
(Filtered)

p-value 
(Filtered)

BTC -11.72 1.41e-21 -16.07 5.56e-29
ETH -37.05 0.00 -19.23 0.00

BNB -16.10 5.13e-29 -11.54 3.58e-21

Source: The authors
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Table 5 reports the results of the ADF test for the return series of BTC, ETH, and BNB, 
both over the full sample and during extreme volatility periods. For the full sample, all 
three cryptocurrencies exhibit strong stationarity, with ADF statistics of -11.72 for BTC, 
-37.05 for ETH, and -16.10 for BNB, each significantly below the 1% critical value of ap-
proximately -3.43, and corresponding p-values effectively zero (e.g., 1.41e-21 for BTC). 
This confirms the absence of unit roots in the return series. Importantly, the stationarity 
persists even when the sample is restricted to the top 10% of days by realized volatility, with 
ADF statistics of -16.07 for BTC, -19.23 for ETH, and -11.54 for BNB, again all well below 
the 1% critical thresholds. These results validate the use of GARCH-type models in both 
general and extreme market conditions, ensuring that the return series are mean-reverting 
and suitable for volatility modeling within the scope of this study.

Table 6. Jarque-Bera test results in return distributions for BTC, ETH, and BNB across 
full and extreme market periods

Cryptocurrency JB Statistic (Full) p-value 
(Full)

JB Statistic 
(Filtered)

p-value 
(Filtered)

BTC 104731.71 0.00 949.85 5.53e-207

ETH 8310.09 0.00 211.31 1.30e-46

BNB 5124.88 0.00 261.01 2.10e-57

Source: The authors

Table 6 presents the results of the Jarque-Bera test for normality applied to the return 
distributions of BTC, ETH, and BNB, both across the full sample and during extreme mar-
ket conditions. The test statistics are exceptionally high in all cases—104,731.71 for BTC, 
8,310.09 for ETH, and 5,124.88 for BNB in the full sample—accompanied by p-values of 
effectively zero, indicating a strong rejection of the null hypothesis of normality. Even when 
the sample is restricted to the top 10% of days by realized volatility, the non-normality per-
sists, with Jarque-Bera statistics of 949.85 for BTC, 211.31 for ETH, and 261.01 for BNB, 
and p-values remaining far below any conventional significance threshold (e.g., 5.53e-207 
for BTC). These results confirm that the return distributions of all three cryptocurrencies 
exhibit significant skewness and kurtosis, particularly during periods of heightened market 
stress. This empirical evidence suggest the use the use of non-Gaussian error distributions, 
such as the Generalized Error Distribution (GED), in the GARCH-type models employed 
in this study, ensuring that the models are well-suited to capture the heavy tails and asym-
metries characteristic of cryptocurrency returns under extreme conditions.

Table 7 presents the results of the ARCH LM test, which evaluates the presence of au-
toregressive conditional heteroskedasticity (ARCH) effects in the return series of BTC, 
ETH, and BNB—an essential diagnostic for justifying the use of GARCH-type models. In 
the full sample, all three cryptocurrencies exhibit strong and statistically significant ARCH 
effects, with BTC showing an LM statistic of 287.20 (p < 0.0001), ETH at 99.26 (p < 0.0001), 
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and BNB at 113.28 (p < 0.0001), confirming the presence of volatility clustering. Howev-
er, when the test is applied to the subset of extreme volatility periods, the results diverge. 
BTC continues to exhibit significant ARCH effects with a statistic of 21.51 and a p-value 
of 0.00065, reinforcing its suitability for GARCH modelling even under stress conditions.

Table 7. ARCH LM test statistics and p-values in BTC, ETH, and BNB returns during the 
full sample and extreme volatility periods.

Cryptocurrency ARCH LM 
Statistic (Full)

p-value 
(Full)

ARCH LM Statistic 
(Filtered)

p-value 
(Filtered)

BTC 287.20 5.66e-60 21.51 0.00065

ETH 99.26 7.55e-20 0.88 0.97172

BNB 113.28 8.28e-23 3.86 0.56924

Source: The authors

In contrast, ETH and BNB show no significant ARCH effects during extreme periods, 
with p-values of 0.97 and 0.57, respectively, suggesting that their volatility dynamics may 
be better captured by models incorporating asymmetry, regime-switching, or long memo-
ry features. These findings underscore the importance of tailoring volatility models to the 
specific behaviour of each asset under extreme market conditions, aligning with the core 
objective of this study.

Table 8. Ljung-Box test statistics and p-values for BTC, ETH, and BNB under full sample 
and extreme volatility conditions.

Cryptocurrency LB Stat (Full) p-value (Full) LB Stat 
(Extreme)

p-value 
(Extreme)

BTC 68.71 7.87e-11 24.94 0.0055

ETH 21.37 1.86e-02 15.79 0.1058

BNB 30.02 8.51e-04 28.38 0.0016

Source: The authors

Table 8 presents the results of the Ljung-Box Q-test applied to the return series of BTC, 
ETH, and BNB, both over the full sample and during extreme volatility periods, to assess 
the presence of autocorrelation—a key justification for including ARMA components in 
the mean equation of GARCH-type models. In the full sample, all three cryptocurren-
cies exhibit statistically significant autocorrelation, with BTC showing a Ljung-Box sta-
tistic of 68.71 (p < 0.0001), ETH at 21.37 (p = 0.0186), and BNB at 30.02 (p = 0.0009), 
indicating that past returns contain predictive information. During extreme market condi-
tions, BTC and BNB continue to display significant autocorrelation, with statistics of 24.94 
(p = 0.0055) and 28.38 (p = 0.0016), respectively. ETH, however, shows a reduced and 
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statistically insignificant autocorrelation in extreme periods, with a Ljung-Box statistic of 
15.79 and a p-value of 0.1058. These findings suggests the inclusion of autoregressive terms 
in the conditional mean equation for BTC and BNB across both regimes, while suggesting 
a potentially simpler mean specification for ETH during high-volatility episodes. This di-
agnostic reinforces the importance of tailoring model structures to the specific autocorrela-
tion dynamics observed in each asset, particularly under stress conditions, which is central 
to the forecasting framework proposed in this study.

Table 9. Estimated Hurst exponents for BTC, ETH, and BNB return series across full and 
extreme market periods.

Cryptocurrency Hurst (Full) Hurst (Extreme)

BTC -4.13 0.69

ETH -3.67 0.47

BNB -3.71 0.51

Source: The authors

Table 9 reports the estimated Hurst exponents for BTC, ETH, and BNB return series, 
both over the full sample and during extreme volatility periods, as a diagnostic for long 
memory behaviour in financial time series. In the full sample, all three cryptocurrencies 
exhibit strongly negative Hurst values—BTC at -4.13, ETH at -3.67, and BNB at -3.71—
suggesting anti-persistent behaviour, which may reflect the high-frequency noise and 
mean-reverting tendencies in daily returns. However, during extreme market conditions, 
the Hurst exponents shift markedly into the positive domain, with BTC at 0.69, ETH at 
0.47, and BNB at 0.51. These values indicate the emergence of long memory and persis-
tent volatility dynamics under stress, particularly for BTC, which approaches the threshold 
of strong persistence. This shift in memory structure under extreme conditions provides 
empirical support for the use of FIGARCH-type models in this study, as they are specif-
ically designed to capture fractional integration and long-range dependence in volatility 
processes. The results underscore the importance of adapting model specifications to the 
temporal characteristics of the data, especially when forecasting volatility in turbulent mar-
ket regimes.

Table 10. Mean 30-day rolling variance of BTC, ETH, and BNB returns as a proxy for 
structural breaks under full sample and extreme volatility conditions

Cryptocurrency Mean Rolling Var (Full) Mean Rolling Var (Extreme)

BTC 0.0026 0.0127

ETH 0.0012 0.0040

BNB 0.0020 0.0057

Source: The authors
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Table 10 presents the mean rolling variance (30-day window) of BTC, ETH, and BNB 
returns as a proxy for detecting structural breaks in volatility, comparing full sample behav-
iour with that observed during extreme market conditions. In the full sample, the average 
rolling variance is relatively low across all assets—0.0026 for BTC, 0.0012 for ETH, and 
0.0020 for BNB—indicating moderate and stable volatility levels over time. However, dur-
ing extreme periods, these values increase substantially, with BTC rising to 0.0127, ETH 
to 0.0040, and BNB to 0.0057. This pronounced escalation in rolling variance suggests the 
presence of structural shifts in the volatility process, likely driven by market-wide shocks or 
regime changes. The magnitude of this increase is particularly notable for BTC, reinforcing 
its sensitivity to systemic events. These findings justify the inclusion of regime-switching 
models such as Markov-Switching GARCH (MSGARCH) in the modelling framework, as 
they are capable of capturing abrupt changes in volatility dynamics that standard GARCH 
models may overlook. The results further emphasise the need for flexible modelling ap-
proaches when forecasting volatility under extreme market conditions.

Table 11. Comparative Volatility Forecasting Performance During Extreme Crypto 
Market Conditions (LOCO Cross-Validation)

Asset Model Average 
RMSE

Average 
MAE

Average 
AIC

Number of Convergence 
Failures

BTC AR-GARCH 9.93 7.21 6024.97 0
MS-GARCH 9.49 5.85 6276.2 0
EGARCH 9.94 7.26 5956.14 0
GJR-GARCH 9.94 7.23 6025.67 0
FIGARCH 9.56 6.75 6023.58 0
CS-GARCH 9.85 6.72 5039.12 0

ETH AR-GARCH 6.94 5.67 5187.79 0
MS-GARCH 5.69 4.31 5299.07 0
EGARCH 6.98 5.61 5108.86 0
GJR-GARCH 6.93 5.66 5189.01 0
FIGARCH 6.78 5.48 5197.41 0
CS-GARCH 6.78 5.48 5015.52 0
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BNB AR-GARCH 9.71 7.27 6222.38 0
MS-GARCH N/A N/A N/A 3
EGARCH 9.84 7.42 6160.86 0
GJR-GARCH 9.76 7.31 6222.18 0
FIGARCH 9.53 7 6228.16 0
CS-GARCH 8.86 6.73 4072.28 1

The table 11 presented summarizes the comparative performance of six GARCH-
type models—AR-GARCH, MS-GARCH, EGARCH, GJR-GARCH, FIGARCH, and 
CS-GARCH—across three major cryptocurrencies: BTC, ETH, BNB. The evaluation is 
based on three key metrics: RMSE, MAE (For the out-of-sample evaluation), and AIC (for 
in-sample evaluation), with an additional column indicating the number of convergence 
failures encountered during model estimation. This synthesis is central to the empirical 
core of the research, as it provides a rigorous benchmark for volatility modelling in the 
context of high-frequency cryptocurrency returns.

For BTC, the AR-GARCH model yields an average RMSE of 9.93 and an MAE of 7.21, 
with an average AIC of 6024.97. These values are closely mirrored by the EGARCH and 
GJR-GARCH models, both of which report average RMSEs of 9.94 and MAEs of 7.26 and 
7.23, respectively. The AIC values for these models are also nearly identical, with EGARCH 
at 5956.14 and GJR-GARCH at 6025.67. The MS-GARCH model, however, demonstrates 
a slightly improved performance with a lower RMSE of 9.49 and a notably lower MAE of 
5.85, albeit with a higher AIC of 6276.2. FIGARCH performs comparably well, with an 
RMSE of 9.56, MAE of 6.75, and AIC of 6023.58. The CS-GARCH model, while reporting 
an RMSE of 9.85 and MAE of 6.72, presents its AIC in logarithmic form (5039), which, 
although not directly comparable in scale, suggests a favourable model fit under its estima-
tion framework. Importantly, none of the models for BTC experienced convergence issues, 
underscoring the robustness of the estimation procedures for this asset.

In the case of ETH, the MS-GARCH model again stands out with the lowest RMSE 
(5.69) and MAE (4.31), and an AIC of 5299.07. This is followed closely by the CS-GARCH 
and FIGARCH models, both of which report identical average RMSE and MAE values of 
6.78 and 5.48, respectively, with AICs of 5.15 and 5197.41. The AR-GARCH, EGARCH, 
and GJR-GARCH models exhibit slightly higher RMSEs (6.94, 6.98, and 6.93) and MAEs 
(5.67, 5.61, and 5.66), with corresponding AICs of 5187.79, 5108.86, and 5189.01. These 
results suggest that while traditional GARCH models perform adequately, models in-
corporating regime-switching or long-memory dynamics (MS-GARCH, FIGARCH, CS-
GARCH) offer marginally better predictive accuracy for ETH. Notably, all models for ETH 
converged successfully, indicating stable estimation across specifications.

BNB presents a more complex modelling challenge. While AR-GARCH, EGARCH, 
GJR-GARCH, and FIGARCH models all converge and yield similar performance metrics—
average RMSEs ranging from 9.53 to 9.84 and MAEs from 7.00 to 7.42—the MS-GARCH 
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model fails to converge in all three test periods, highlighting potential instability or over-
parameterization in the context of BNB’s return dynamics. The CS-GARCH model, despite 
one convergence failure, reports the lowest average RMSE (8.86) and MAE (6.73), suggest-
ing that its component structure may be better suited to capturing the volatility clustering 
and persistence in BNB returns. The AIC for CS-GARCH is again reported in logarithmic 
form (4072), which, while not directly comparable, supports its relative efficiency.

Overall, the findings underscore the importance of model selection in cryptocurrency 
volatility forecasting. MS-GARCH and CS-GARCH models consistently deliver superior 
performance for BTC and ETH, with CS-GARCH showing promise for BNB despite oc-
casional convergence issues. These results validate the inclusion of regime-switching and 
component structures in volatility modelling frameworks, particularly in markets char-
acterised by high volatility, structural breaks, and non-linear dynamics. The convergence 
diagnostics further emphasise the need for careful specification and estimation strategies, 
especially when applying complex models to assets with less stable return distributions. 
This comprehensive evaluation provides a robust foundation for selecting appropriate 
GARCH-type models in empirical finance research focused on digital assets.

4. Discussion

The findings of this study contribute to the growing body of literature on cryptocur-
rency volatility forecasting during extreme market conditions, while revealing several im-
portant insights that both support and challenge existing research paradigms. The supe-
rior performance of MS-GARCH and CS-GARCH models across BTC and ETH, and the 
mixed results for traditional GARCH specifications, align with recent advances in the field 
while highlighting the unique challenges posed by cryptocurrency markets.

The dominance of MS-GARCH models in our study, particularly for BTC (RMSE: 9.49, 
MAE: 5.85) and ETH (RMSE: 5.69, MAE: 4.31), corroborates the findings of Qiu et al. 
(2025), who emphasised the importance of model clustering and combination approach-
es in cryptocurrency volatility prediction. Their demonstration of utility gains equivalent 
to 3.46% of wealth for risk-targeting investors supports our conclusion that sophisticated 
volatility models offer tangible economic benefits during extreme market conditions. Sim-
ilarly, our results align with Ampountolas (2022), who found that GJR-GARCH models 
demonstrated superior predictive accuracy for high-frequency cryptocurrency volatility, 
particularly in capturing asymmetric shock effects.

However, our findings diverge from Dudek et al. (2024), who reported that simple lin-
ear models such as HAR and ridge regression performed comparably to complex models 
like LSTM. In contrast, our regime-switching models consistently outperformed tradi-
tional GARCH specifications, suggesting that the extreme market conditions examined 
in our study may require more sophisticated modelling approaches than standard volatil-
ity forecasting contexts. This discrepancy may be attributed to the specific focus on crisis 
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periods in our LOCO framework, where structural breaks and regime changes are more 
pronounced.

Convergence Issues and Model Stability
The convergence failures observed for MS-GARCH models in BNB across all three 

test periods present a significant challenge that has received limited attention in the litera-
ture. While Ahmed et al., (2024) acknowledged the complexity of cryptocurrency volatility 
modelling and the need for robust estimation strategies, they did not specifically address 
convergence issues in regime-switching models. Our findings suggest that BNB’s return 
dynamics may be fundamentally different from BTC and ETH, potentially due to its more 
recent introduction to the market and different underlying economic drivers related to the 
Binance ecosystem.

This stability concern is particularly relevant given the broader trend toward complex 
machine learning approaches in the literature. Zubair et al., (2024) reported impressive 
RMSE values (0.0241% for BTC, 0.0645% for ETH) using their Bi-LSTM-GRU-BERT-
VADER hybrid model, but their focus on price prediction rather than volatility forecasting 
limits direct comparison. Our results suggest that while sophisticated models can achieve 
superior performance, practical implementation challenges, particularly convergence sta-
bility, remain significant barriers to adoption.

One of the most significant findings of our study is the minimal correlation between 
cryptocurrency volatility and traditional financial stress indicators, particularly the VIX 
index. This observation challenges the assumptions underlying much of the existing lit-
erature that incorporates external macroeconomic variables. While Tzeng & Su, (2024) 
found that 15-17 U.S. macroeconomic variables demonstrated forecasting ability for cryp-
tocurrency volatility, with the consumer confidence index and leading economic indicators 
being most influential, our results suggest that during extreme market conditions, cryp-
tocurrency markets may operate independently of traditional financial stress indicators.

This finding has important implications for risk management and portfolio diversifi-
cation strategies. The decoupling effect observed in our study supports the view that cryp-
tocurrencies may serve as alternative assets during traditional market stress, though this 
comes with the caveat that they exhibit their own unique volatility patterns that are not 
easily predicted using conventional financial metrics.

The LOCO cross-validation framework employed in our study addresses a critical gap 
identified in the literature. AlMadany et al. (2024) emphasized the importance of out-of-
sample methodologies to avoid overfitting, noting that much of the existing literature relies 
on in-sample approaches that may not translate to practical forecasting applications. Our 
systematic exclusion of crisis periods from training data provides a more realistic assess-
ment of model performance during extreme market conditions.

However, our approach differs from the high-frequency forecasting methods increas-
ingly prevalent in the literature. Rodrigues and Machado (2025) demonstrated superior 
performance using GRU neural networks for minute-step Bitcoin price prediction (MAPE: 
0.09%), while our daily frequency approach captures longer-term volatility dynamics. This 
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difference in temporal resolution may explain some of the performance variations observed 
across studies and suggests that optimal model selection may be frequency-dependent.

The heterogeneous performance across different cryptocurrencies in our study sup-
ports the findings of Pečiulis et al. (2024), who identified the need for asset-specific mod-
elling approaches in their systematic literature review. The superior performance of CS-
GARCH for BNB, despite convergence issues, suggests that component-based models may 
be better suited to capturing the unique characteristics of exchange-specific tokens com-
pared to more established cryptocurrencies like BTC and ETH.

This heterogeneity challenges the common practice in the literature of applying uni-
form modelling approaches across different cryptocurrencies. As noted by Ruiz Roque da 
Silva et al. (2022), while most studies focus on the top 10 cryptocurrencies by market cap-
italisation, the distinct characteristics of different tokens may require tailored modelling 
approaches.

5. Limitations and Future Research

Several limitations warrant acknowledgement. First, our analysis focuses solely on the 
three largest cryptocurrencies by market capitalisation, potentially limiting generalizability 
to smaller altcoins. Second, convergence failures in MS-GARCH models for BNB suggest 
the need for alternative regime-switching specifications or estimation algorithms. Third, 
our study period, while comprehensive, may not capture all relevant market regimes as the 
cryptocurrency ecosystem continues evolving.

Future research should extend this framework to a broader universe of digital assets, 
investigate the role of market microstructure factors in extreme volatility episodes, and 
develop hybrid models that combine the forecasting accuracy of regime-switching specifi-
cations with the stability of traditional GARCH variants. Additionally, incorporating cryp-
to-specific variables (on-chain metrics, sentiment indicators, regulatory announcements) 
into volatility models represents a promising avenue for improving predictive accuracy.

Conclusions

This study examines volatility forecasting performance across advanced GARCH spec-
ifications during extreme cryptocurrency market conditions using a Leave-One-Crisis-Out 
cross-validation framework spanning August 2017 to June 2025.

Our findings provide strong evidence for the endogenous nature of cryptocurrency 
volatility. The documented lack of consistent overlap between Bitcoin volatility spikes and 
VIX index peaks demonstrates that traditional financial stress indicators have limited 
explanatory power for crypto market turbulence. This finding validates our decision to 
abandon index-based filtering in favour of realised volatility thresholds, as crypto markets 
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exhibit idiosyncratic volatility patterns largely decoupled from traditional financial stress 
indicators.

LOCO analysis reveals distinct volatility patterns across assets. Bitcoin’s longest 
high-volatility episode (February-July 2021, 158 days) coincided with institutional adop-
tion and regulatory uncertainty, while Ethereum’s peak volatility (May-July 2021, 55 days) 
aligned with DeFi market expansion and network upgrades. BNB’s volatility periods were 
shorter and more concentrated around exchange-specific events. These asset-specific pat-
terns underscore the heterogeneous nature of cryptocurrency market dynamics and the 
inadequacy of treating crypto assets as a homogeneous asset class.

Cross-asset comparison reveals that regime-switching and component models consist-
ently outperform traditional specifications. MS-GARCH demonstrates superior forecast-
ing accuracy for Bitcoin (average RMSE: 9.49) and Ethereum (average RMSE: 5.69), while 
CS-GARCH shows promise for BNB despite convergence challenges. Traditional GARCH 
variants (AR-GARCH, EGARCH, GJR-GARCH) exhibit remarkably similar performance 
across assets, suggesting limited gains from asymmetric specifications in cryptocurrency 
markets. However, the systematic convergence failures of MS-GARCH for BNB highlight 
model-specific limitations that require careful consideration in practical applications.

Our study makes three primary contributions to the cryptocurrency volatility literature. 
First, we demonstrate that advanced GARCH specifications incorporating regime-switch-
ing dynamics provide meaningful improvements over traditional models during extreme 
market conditions. Second, we establish that cryptocurrency volatility exhibits limited 
co-movement with traditional financial stress indicators, supporting the “crypto excep-
tionalism” hypothesis. Third, our LOCO methodology provides a rigorous framework for 
stress-testing volatility models under realistic forecasting constraints.

For risk managers and portfolio optimisation, our findings suggest that (1) traditional 
VaR models based on correlation with equity markets may systematically underestimate 
cryptocurrency tail risks, (2) regime-switching models should be prioritised for Bitcoin 
and Ethereum volatility forecasting, and (3) asset-specific model selection is crucial given 
the heterogeneous convergence properties across cryptocurrencies.

For regulators, the endogenous nature of crypto volatility implies that systemic risk 
assessment frameworks developed for traditional finance may be inadequate for crypto-
currency markets, necessitating crypto-specific stress testing methodologies.
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