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Abstract. This paper presents a universal approach to modelling stock prices. The tech-
nique involves Markov Chain Monte Carlo (MCMC) sampling from piecewise-uniform distri-
bution.

Today’s financial models are based on assumptions which make them inadequate in many
cases. One of the most important issues is determining the distribution of a stock price, its re-
turn or other financial mean. The approach proposed in this paper removes almost all presump-
tions from a distribution of a stock price. The probability density must be evaluated using some
nonparametric estimates. The kernel density estimate (KDE) suits well for that purpose. It gives
a smooth and presentable estimate.

MCMC was chosen due to its versatility and is applied to KDE using piecewise-linear dis-
tribution as proposal density. The proposal density is constructed according to the KDE. Such
link between the piecewise-linear distribution’s simplicity and relative massiveness of KDE bal-
ances together.

Involving the kernel density estimate and the methodology to sample from it makes the
technique universal for modelling any real stochastic system while having empirical data only
and barely any assumptions about the distribution of it.

JEL classification: C10, C15, C46, C65.

Keywords: Stock prices, Markov chain, Monte Carlo method, MCMC, kernel density,
piecewise-linear distribution.
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Introduction

Classical model of stock prices has some assumptions about financial data. It can-
not be applied to model the stock price having returns which are not log normally
distributed.

There are several approaches to model difficult quantities, but they specialize in
different areas. The purpose of this paper is to present a universal technique for model-
ling stock prices. This technique consists of special numerical methods and is suitable
for any empirical data.

The Markov chain Monte Carlo method is used to sample from empirical prob-
ability density of a stock price. The technique is flexible and requires just the ability to
calculate probability at any given point. Furthermore, MCMC was successfully applied
to one-factor models for the interest rate (B. Eraker, 2001). This also acts as the reason-
ing for choosing it for this approach of modelling stock prices.

It is also needed to approximately evaluate empirical probability density. This is
performed using kernel density estimation. The link between these two methods is
considered and this leads to apply it on every financial data.

1. Monte Carlo Modelling of Stock Prices

The process of a stock price is treated as a Brownian motion. Thus its value satisfies
the equation:

dS = uSdt + oSdz . (1.1)

Consider a financial mean with log normally distributed returns. The random walk
of price of such a financial mean is modeled according this formula (P. Wilmott, 2007):

12 )At-m' NI

S(+ Af)= s(t)e[s‘z

(1.2)

Here random value Z ~ N (0, 1) follows standard normal distribution, O is annual
risk free return and ¢ is annual standard deviation of the logarithm of a stock price.

2. Markov chain Monte Carlo (MCMC)

Suppose it is needed to generate x; ~T (x) When x; ~T (x) is difficult to sample
from, MCMC sampling technique could be performed. In fact MCMC is a set of techni-
ques used for this purpose. The main idea of it is to construct a Markov chain {X ; }Zo ,
such that

hmP(Xl. =x)=7t(x)_ (2.1)
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A Markov chain is predefined by an initial state P(X 0 =X )= g(x0 ) and the tran-
sition kernel P(y| x)z P(X 4 = y| X; = x). Stationary distribution n(x)= lim f (x,)
is unique if the chain is ergodic. Then: o

n(y)=>n (x)P(y| x), VyeQ. (2.2)

xeQ

Latter equality could be rewritten as a set of (7 —1) linear equations:

7 (x, )= (x, )D(x2| Xy )"‘Tc (x, )D(x2| X3 )"' AT, )D(xz Xy )
R ST 7 I TS ST ST S

here n == |Q| . There are a total number of (7 —1) equations and n(n - 1) transition prob-

(2.3)

abilities PQ j‘ X, ), k=1n, j=1,n—1. Thus there exist an infinite number of transi-

tion kernels P(v| x), such that the stationary distribution of the Markov chain is 7 (x)
One of the techniques used for constructing such a transition kernel is Metropolis-
Hastings algorithm (J.S. Dagpunar, 2007). The idea of it is to choose any other transi-

tion kernel Q(y| x). Then there exists a probability that Q(y| x) is equal to P(y| x).

P(y| x)= Q(y| x)a(y| x), V#EX, a(y| x)e [0; 1]. (2.4)

Considering the detailed balance condition of a time-homogeneous Markov chain
yields:

()0 xJe (] x)=2(n)Ol] ¥ el y), Ve y. (2.5)

The general solution for (2.5) is a(y| x): r(x, y)ﬂ(y)Q(x| y). It is necessary to
have a higher acceptance ratio when sampling random numbers, therefore by adjust-
ing r(x, y ) and considering higher acceptance ratio while sampling random numbers
(V. Prokaj, 2009) it is shown that:

oy x)= min[l, %))g(j—g] : (2.6)

3. Nonparametric probability density estimation

Consider a sample consisting of random independent and identically distributed
values X, . Kernel density estimate is chosen for evaluate the probability density of X;.

A 1< I (x
F©-13 K6 5,61k (5) o)

here K () is the kernel function, h is its width.
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+wK X)dx =1, +wf(x)dx =1,
J. ( ) = ?.[ . (3.2)

—00

K(x)>0. f(x)>0.

Below are some kernel functions that are frequently used. The triangular kernel
function is useful if the data has sharp edged distribution. Gaussian kernel makes the

estimate’s PDF plot very smooth.

K( )_ 1—|x|, |x|£1, .
X)= 0, |x|>1. (triangular), (3.3)
E — 2 <1
K (x)= (4)1( * )’ :x:_; (Yapanichnikov), (3.4)
, x| >1.
x2
K(x)= ! e 2 (Gauss). (3.5)

N

Basically, such probability density estimation is about assigning kernel density to
each X, and including weighted sum of all other assignations. The contribution of any
other X ; to the probability value at X is smaller if X; — X, is bigger.

Sample Kernel function
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Fig. 1. Kernel density estimation.

Figure 1 shows the probability density estimation from 5 given points while ap-
plying Gaussian kernel. The estimate is absolutely smooth. The only drawback of such
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estimation is the necessity of using all the points from the sample while evaluating the
probability at a particular point.

4. A New Approach to Modelling Stock Prices
4.1. Evaluation of Distribution Function

This chapter presents the approach to model stock prices or any other statistical
data (the method is universal enough) without knowing analytical probability density
function.

First of all kernel density estimation must be performed and construct an estimate
to the return of a stock price. At this point there could be a discussion if this estimate is
accurate, but it is assumed to be exact. And there is no need to look for analytical func-
tions which best fit in a particular case. It is not necessary to think about the shape at all,
it forms itself according the data. The only question is the width of the kernel function.

4.2. Special technique for constructing a proposal density

The target probability density is now constructed. In order to model it a special
technique is required, because there are no inverse cumulative density function or one
cannot represent the estimate using known analytical PDF’s. MCMC is a solution but it
could not be applied directly to the PDF estimate mentioned before.

Probably the biggest advantage of MCMC is the ability to generate required density
using the proposal density, which should be similar in shape to target density. No other
requirements to proposal density. Thus the complexity of proposal density is as simple
as it is needed. Consider a histogram, which is relatively fast and simple non-paramet-
ric estimate for target density. It is possible to use it as proposal density therefore. But
the assumption about target density not being discrete must be taken in mind, there
are no set of values to construct a histogram from. The idea of the technique presented
in this paper is to construct a piecewise-uniform distribution according to the kernel
density estimate. A piecewise-uniform distribution is defined in eq. (4.2.1).

25 1
20 0.8
15 0.6
z z
= ; IC
10 0.4
5 0.2
. d—

Fig. 2. Proposal density as a piecewise-linear probability distribution.
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q;, Xog<x=<Xx,
q>, X <xX=< Xy,
q(x)= (4.2.1)

9, X, <XZ<X,.

The area below the probability density function must be equal to 1, thus:

g = o (4.2.2)
i-1 Xn =X

This distribution is treated as a proposal density. Generating random numbers
from this distribution is fast and simple.
1-
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Fig. 3. Generating random numbers using inverse CDE.

Sampling from q(x) requires application of a search procedure. Firstlya u ~ U (O; 1)
is drawn. Then it is required to find the interval (xi X ], i=1,n, to which u belongs
to. Since the number of intervals is going to be small, this step does not require many
calculation steps. Then u is mapped to x according to the CDF of q(x) like in figure
3. CDF of q(xg is obtained by calculating the area below target density in each of the
intervals.

Using q(x ) as the proposal density and kernel density estimate as a target distribu-
tion implies random values x; having distribution equal to f (x) It must be noted that
acceptance ratio for X; is now

0 i) mm(l, ;‘((Y_%]

(4.2.3)
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The sampling technique is called the independence Metropolis-Hastings when
q x| y)= q(x . The independence sampler has one significant advantage compared to
traditional Metropolis-Hastings: the sequence ; § has no memory effect. Each ran-
dom value accepted in simulation process does not depend on previous value. Thus
there is no importance in what was x, generated. A brief description of Metropolis-
Hastings techniques could be found in (M. Johannes, 2006).

5. Calibration of the model

Every model should give adequate results and compare to other known models
or techniques. Making the model hold this is called a calibration. In this case, the new
technique for modelling stock prices must give similar results as traditional Monte
Carlo if stock returns are log normally distributed. Again the hypotheses about the
normality of the logarithms of the stock returns are going to be tested.
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Fig. 4. Yahoo! Inc. historical share prices.

Yahoo! Inc. (YHOO) share prices from 2010 01 04 to 2010 09 27 were chosen for
performing the calibration. Historical share prices are depicted in figure 4. By perform-
ing the Kolmogorov-Smirnov test on the logarithms of the prices’ returns p =0.992
and D =0.0742 were obtained. D < p shows that the logarithms are normally dis-
tributed and leads data to be suitable for classical stock price model.
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200 Monte Carlo trajectories
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Fig. 5. Classical Monte Carlo modelling versus MCMC approach.

200 trajectories (figure 5) were modeled for each technique. According the classi-
cal Monte Carlo approach the mean value of a price after 50 days will be 18.08 $. The
newly proposed technique gave it 18.10 $ per share. This is actually expected, because
the trend was considered.
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10 12 14 16 18 20 22 24 26 28 30 10 12 14 16 18 20 22 24 26 28 30

Ry Ry

Fig. 6. Comparing Monte Carlo and MCMC results.

In figure 6 the histograms of classical Monte Carlo and MCMC are compared.
They represent the distribution of stock prices at the end of the modelling process. The
modelling process contained 1000 paths of a stock price and simulated 100 days. Thus
it required 100000 random stock returns to be performed.
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Fig. 7. Differences between the Monte Carlo and MCMC results.

The biggest difference between the two histograms exists at about mean value. The
tails match better. Classical Monte Carlo converges to stock price distribution when the
number of paths is increasing; the method proposed in this paper should also. Checking
if the new method matches Monte Carlo is equivalent to checking if it converges to the
distribution of a stock price. While evaluating the difference between two probability

densities often an integral of an absolute value of their difference is used. Now consider
an estimate:

Aye = i‘hMC(Xj)_hMCMC(XjX’ (5.1)

J=1

hye (~)and Ryienc () is the histograms of a stock price at the end of the modelling, m is
number of bars and X ; represents the center point of the j-th bar.

Table 1. Differences between the histograms of the stock prices modeled by

Monte Carlo and MCMC

No. of bars in No. of No. of random A
g(x) trajectories values Me
50 5000 0.245
100 10000 0.131
3 200 20000 0.116
500 50000 0.072
1000 100000 0.064

Table 1 shows how A ;- changes if the number of a stock price paths N increases.
The bigger N the more Monte Carlo and MCMC results are alike. MCMC proved to be
suitable for modelling stock prices.

The number of bars in g(x) is equal to a question of peaks and distance between
them in target distribution. Since the returns of stock prices have a distribution similar
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in shape to normal distribution, g(x) should have a small odd number of bars in order
to best match the target distribution.

Table 2. Differences between the histograms of the stock prices modeled by Monte Carlo

and MCMC
No. of bars in g(x) No. of trajectories No. (‘)’zfsélsdom A e
50 5000 0.265
100 10000 0.131
5 200 20000 0.091
500 50000 0.060
1000 100000 0.050

As the table 2 shows choosing 5 bars in proposal density results in more precise
distribution of stock prices. Accuracy increases but the calculation time is higher also.
This is due to more calculation steps required to find the interval of g(x) to which a
particular random number belongs to.

6. Modelling stock prices

Here is an example when classical Monte Carlo method cannot be applied to mod-
el stock prices.

05
0.4}
0.3}
0.2}

0.1+

Fig. 8. Distribution of normalized logarithms of continuous day returns.

The histogram of normalized logarithms of continuous day returns R; of Tesco
Corporation (TESO) is depicted in figure 8. Although the hypothesis of normality is ac-
cepted, there exist two peaks. If one is confident about the shape of histogram, the as-
sumption of normality should be rejected and standard Monte Carlo cannot be applied.
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Fig. 9. Forecasting the stock prices.

S. .
Constructing kernel density estimate for r, = ———1

i-1
function also gives PDF with 2 peaks (figure 9). MCMC with piecewise-linear distribu-
tion as a proposal density was applied to this PDE

using Gaussian kernel

25

20

Fig. 10. Forecasting TSO stock prices.

Average share price after 50 days resulted in $14.75. All the prices generated are
distributed according kernel density estimate. Sampling is based entirely on empirical
data and has no assumptions about PDE.

7. Conclusions

1. While estimating the probability density of a custom stock return with kernel
density, each return in the sample is considered.

2. Proposed technique for modelling stock prices leads for average path of the
stock price having small dispersion. The same holds for the Monte Carlo
method.
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3. The higher number of intervals used for constructing piecewise-uniform prob-
ability density leads to better accuracy of distribution modeled, but requires
more time to perform the method.

4. Combining MCMC with kernel density estimate leads the technique for being
able to model any real system. Thus empirical probability density is construct-
ed using particular statistical information. This could be value of a financial
mean, product quality measures and so on. Thus the technique is universal.
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AKCIJU KAINU MODELIAVIMAS MARKOVO GRANDINES
MONTEKARLO METODU

Mantas LANDAUSKAS
Eimutis VALAKEVICIUS

Santrauka. Straipsnyje pristatoma universali akcijy kainy modeliavimo technika. Si tech-
nika paremta Markovo grandiniy Monte Karlo (MCMC) metodo taikymu modeliuojant dali-
mis tolygyji skirstinj.

Dabartiniai finansy rinky modeliai paremti prielaidomis, kurios daznai juos verc¢ia neadek-
vaciais. Viena didziausiy problemy yra akcijos kainos, jos grazos ar bet kokios kitos finansinés
priemonés pasiskirstymo désnio nustatymas. Siame straipsnyje pasiiilytas poZitiris pasalina be-
veik visas akcijos kainos pasiskirstymo prielaidas. Tokiu atveju pasiskirstymo désnis turi bati
jvertintas neparametriniu biidu. Branduolinis tikimybinio tankio jvertinimas $iam tikslui pui-
kiai tinka. Jis sudaro glotny ir reprezentatyvy tankio jvertj.

MCMC buvo pasirinktas dél didelio pritaikomumo ir yra taikomas branduoliniam tan-
kio jverciui su dalimis tolygiuoju skirstiniu kaip alternatyviu (aproksimuojanciu) tankiu.
Alternatyvus tankis konstruojamas pagal branduolinj jvertj. Toks dalimis tolygiojo skirstinio
paprastumo ir santykinai auksto branduolinio tankio jver¢io sudétingumo skai¢iavimo prasme
sujungimas sukuria pusiausvyra tarp $iy metody.

Taikant branduolinj akcijos kainos pasiskirstymo jvertinimg ir $iame straipsnyje siiloma jo
modeliavimg pateiktg technika padaro universalig. Ji tampa tinkama bet kokiai realiai stochasti-
nei sistemai turint tik jos empirinius duomenis ir beveik jokiy prielaidy apie jy pasiskirstyma.
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