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Abstract. On the basis of ratio analysis, two methods are developed for multi-objective optimization with discrete
alternatives. The first method is MOORA (Multi-objective Optimization on the basis of Ratio Analysis), which serves as
a matrix of responses to the alternatives to the objectives to which ratios are applied. The set of ratios has the square roots
of the sum of the squared responses as denominators. These ratios are considered to be the best choice among different
examples of ratios. The final results varying between zero and one are added up or subtracted to minimize the objective.
Finally, all alternatives are ranked according to the size of their obtained dimensionless numbers. Eventually, the most
refined way to give more importance to an objective is to replace an objective by different sub-objectives. As a second
method, based on the same reasoning as the MOORA method, the Reference Point Method is applied. Ultimately, it is
concluded that the second method only serves as a control instrument or as the second best method.
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(Zavadskas, 1990; Roy and Damart, 2005; Brauers,
2004b).

In fact, the utility matter is problematic in four
aspects: the choice of units per objective, the normali-
zation, the optimization and the importance given to
an objective. In this case the u’s can be dropped from
the formula.

(1) Nowadays units, attributes, norms, indicators, no
matter the name, are used to measure everything, even
quality, without any detours to consider the monetary

1. Introduction
1.1. Definitions

The issue of utility has always been crucial for
researchers in multi-objective decision making, the
starting formula being:

max Uy) = fluy(x)),ux(x2), ..., un(x,)]

Utility can solely be measured in monetary terms

(like in cost-benefit analysis) but researchers consider
this attitude to be too materialistic or even unrealistic

aspects. This is the case in firms, but also in micro-
and macroeconomics. Sometimes direct measurement,
being too complicated to be made, is substituted by
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Alternative Measurement, such as of pollution abate-
ment, quality and individual choice. Let us consider
the example of alternative measurement of pollution.
Air pollution is difficult to be measured directly.
Therefore, pollution abatement costs, for instance, the
installation costs in a factory in order to diminish the
emission of dangerous gasses and dust represent an
alternative measurement of pollution. However, there
exist different types of pollution which can be caused
by different reasons. For example, air quality in a
region like the metropolitan area of Los Angeles
could be good, fair or bad. A survey was made in
which households in good air quality areas were asked
their willingness to pay for a region-wide improve-
ment in air quality. On the basis of the survey and the
analysis of the housing market the premium an indi-
vidual household would have to pay in order to obtain
an identical home in a cleaner air region was deter-
mined (Brookshire et al., 1982). Regarding noise pol-
lution in residential areas situated near airfields, the
cost of complete isolation of houses, the drop in prices
of these houses or the amortization of the last models
of airplanes would be considered as alternative meas-
urements of noise pollution caused by aircraft noise.

1.2. Assumptions

This article is based on three assumptions.

- The Assumption of Cardinal Numbers

As all objectives are assumed measurable in a di-
rect or alternative way, only cardinal numbers are
involved (not nominal scales, such as excellent, good,
fair or bad).

- The Assumption of Discrete Choices

The discrete case counts a number of well-
defined and possible alternatives (projects, design).
On the contrary, the continuous case generates alter-
natives during the process itself.

- The Assumption of Stakeholders

A decision maker/dictator is replaced by a group
of stakeholders. It is not a question of haphazardly
choosing one or more decision makers. On the con-
trary, all stakeholders interested in the issue have to
be involved.

1.3. The Methods

Two methods are proposed: firstly, the MOORA
method; secondly, the Reference Method with Maxi-
mal Criterion Values.

For each method the starting point is a matrix of
responses of different alternatives to different objec-
tives:

(xy) @
with: x; as the response of alternative j to objec-
tive i
i=1,2,...,n as the objectives
j=1,2,...,m as the alternatives

2. The MOORA Method

MOORA is a ratio system in which each re-
sponse of an alternative to an objective is compared to
a denominator which is representative of all the alter-
natives concerning that particular objective. For this
denominator the square root of the sum of squares of
each alternative per objective is chosen (Van Delft
and Nijkamp, 1977):

__ N
N TS 3)
Z Jj=1 Xij

with: x;; = response of alternative j to objective i

j = 1,2,....,m; m being the number of alternatives

i = 1,2,...n; n being the number of objectives

wx; = the normalized response of alternative j to
objective i; normalized as a dimensionless number

Dimensionless Numbers, having no specific unit
of measurement, are obtained, for instance, by deduc-
tion, multiplication or division. The normalized re-
sponses of the alternatives to the objectives belong to
the interval [0; 1]. However, sometimes the interval
could be [-1; 1]. Indeed, for instance, in the case of
productivity growth some sectors, regions or countries
may show a decrease instead of an increase in produc-
tivity, i.e. a negative dimensionless number'.

For optimization these responses are added in
case of maximization and subtracted in case of mini-
mization:

i=g i=n
Nyj:Zinj_ Zinj @)
i=1 i=g+1

with: i = [,2,...,g representing the objectives to
be maximized

i =g+l gt2,..., nrepresenting the objectives to
be minimized

v ;= the normalized situation of alternative j

responding to all objectives

A simulation exercise on privatization illustrates
the application of the MOORA and Reference Point
methods (Brauers, 2004c, 64).

An ordinal ranking of the ny; shows the final
preference (Arrow et al., 1949). As Arrow (1974:
256) claims, “a cardinal utility implies an ordinal
preference but not vice versa”.

! Instead of a normal increase in productivity growth a decrease is
possible. At that moment the interval becomes [-1, 1]. Consider the
example of productivity which has to increase (positive).
Consequently, we look into a maximization of productivity, e.g. in
European and American countries. What if the opposite variant
occurs? For instance, consider the change from USSR to Russia.
Contrary to other European countries, productivity decreased. It
means that in formula (1) the numerator for Russia would be negative
with the whole ratio becoming negative. Consequently, the interval
becomes: [-1, +1] instead of [0, 1].
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3. Introduction of Ratios in the
Reference Point Theory

This method starts from the already normalized
ratios as defined in the MOORA method, namely,
formula (3).

Concerning the Reference Point Theory a Maxi-
mal Criterion Reference Point is chosen, possessing as
co-ordinates the highest co-ordinates per objective of
all the candidate alternatives. For minimization the
lowest co-ordinate is chosen.

In order to measure the distance between the co-
ordinates of the alternatives and the reference point,
the Min-Max Metric of Tchebycheff is chosen (Karlin
and Studden, 1966: 280):

Min{max/ ri= N X /} )
() L0 !
with: i = [, 2,..., n representing the objectives
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j =1, 2,..., mrepresenting the alternatives

r; = the i" co-ordinate of the maximal criterion
reference point. Each co-ordinate of the reference
point is selected as the highest corresponding co-
ordinate of the alternatives

ax; = the normalized objective i of alternative j

In the case of a minimum the distances between
the rather low co-ordinate of the reference point and
the corresponding co-ordinates of the responses of
the alternatives to an objective are negative. There-
fore, only absolute values are introduced in the Min-
Max metric.

The preference for this nonconvex result is nec-
essary in order to respect Consumer Sovereignty (fur-

ther explained in Brauers, 2004b: 132-163).
A simulation exercise illustrates the application
of the MOORA method (Table 1).

Table 1. A Simulation of MOORA and the Reference Point Method based on Ratios

1a - Matrix of responses of alternatives to objectives: (x;)

1. 2. 3. 4. 5. 6.
Projects IRR Payback | New Inv. New V.A. Bal. of Paym.
(%) Period (10°€) | Employm. (10°€) curr. acc.
(in years) (in jobs) | (discounted) (10°€)
MAX
MAX MIN MAX MAX MAX

Project A 12 5 4.5 750 800 150

Project B 12 7 3 800 600 200)

Project C 10 9 2.5 900 850 150

Totals 34 21 10 2,450 2250 500

1b - Sum of squares and their square roots

Projects

Project A 144 25 20.25 562500 640000 22500

Project B 144 49 9 640000 360000 40000

Project C 100 81 6.25 810000 722500 22500

Sum of

squares 388 155 35.5/ 2012500 1722500 85000

Square roots|  19.6977156/12.4498996 5.9581876, 1418.6261 1312.4405  291.5475947

Ic - Objectives divided by their square roots and MOORA
sum rank

Project A 0.609207699 | 0.401610 | 0.7552632 |0.52868053|  0.60955 0.514495755 | 2.61559 1
Project B 0.609207699 | 0.562254 | 0.5035088 | 0.563926 | 0.4571636 | 0.685994341 | 2.2575 2
Project C 0.507673083 | 0.722897 | 0.4195907 |0.63441664| 0.6476484 | 0.514495755 | 2.1560 3

1d - Reference Point Theory with Ratios: co-ordinates of the Reference Point equal to the maximal criterion values

I 0.609207699 | 0.401610 | 0.7552632 0.63441664| 0.64765 0.685994341
le - Reference Point Theory: deviations from the Reference Point
max Rank min
Project A 0 0 0 0.10573611 0.03810 0.171498585 | 0.17150
Project B 0 0.160644 | 0.2517544 | 0.070491 0.19048 0 0.251754
Project C 0.101534617 | 0.321288 | 0.3356725 0 0.00000 0.171498585 | 0.33567
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By introducing small changes into the simulation
it is shown that the Min-Max Metric of Reference
Point Theory with ratios is not flexible enough to
react to such changes (Brauers, 2004a: 180). There-
fore, this Reference Point Theory is considered to be
the second best method (after the MOORA method)
or as a control system for MOORA.

In MOORA the choice of the square roots of the
sum of the squared responses as denominators may
look rather arbitrary (Brauers, 2007a, 2007b; Brauers
et. al., 2007; Brauers and Zavadskas, 2006). There-
fore, the search for alternative denominators is the
main issue of this research.

4. Is the Use of other Denominators in
the MOORA Method Advisable?

In the MOORA formula (3) the denominator

2
Zx,.j was chosen.

Jj=1

Possibilities with other denominators will also be
discussed as the following description cannot be said
to be exhaustive.

4.1. Voogd (1983) Ratios

Xjj

m
2%
j=1

Allen (1951) already used this formula, but
Voogd (1983) applied it for multi-objective evalua-
tion. For optimization these responses are added in
case of maximization and subtracted in case of mini-
mization (formula (8)).

The total ratios are smaller than those in the
square roots method but their calculation is less com-
plicated. However, they will not necessarily lead to
the same outcome, e.g. the simulation of marketing in
a department store showed different results (Brauers,
2004b: 307-309). Moreover, if many situations similar
to the example of productivity occur, the denominator
of the ratio could become positive, negative or even
equal to zero. Then the ratio itself could obtain all
positive or negative values, or could even be unde-
fined. Consequently, the intervals [0; 1] or [-1; 1] are
not maintained in the formula of total ratios.

NX; =

(©)

4.2. Schirlig (1985) Ratios

What regards Schérlig Ratios, one of the alterna-
tives is taken as a basis. This mechanical approach is
comparable with the formula of Schérlig which multi-
plies all the fractions.

A problem arises if the alternative which is used
as a basis lacks one of the objectives. As a result,
some undefined ratios are obtained because the de-
nominator is zero. Therefore, an alternative with no
objectives equal to zero has to be chosen as a basis.

Obviously, if another alternative is chosen as a
basis, different results are obtained; therefore, a ratio
analysis in which one of the alternatives is taken as a
basis does not produce a univocal outcome (see simu-
lations in Brauers, 2004b: 297).

4.3. Weitendorf (1976) Ratios

Weitendorf compares the responses with the
Maximum-Minimum interval in the following way:
- if mx; should be maximized:

ij i
Wy = )
X

- if yx; should be minimized:
_ i
R A — )

with: x; representing the maximum value and

x; representing the minimum value of objective i.
The normalized responses belong to the interval

[0; 1].

This method which at the first glance seems in-
teresting has to be rejected on the following grounds:

1) the Reference Method with the co-ordinates of
the reference point equal to the maximal criterion
values cannot be applied as all co-ordinates of the
reference point are equal to one (see Table 2e and
Table 2f).

2) If only the maximum and the minimum per
objective of all alternatives are taken into considera-
tion, the composition of the whole series of objectives
remains disregarded, i.e. the following points are not
considered:

- the spread as measured by the standard devia-
tion. For several series this spread can be different
though with the same maxima and minima;

- the median and the quartiles can be different for
several series though with the same maxima and min-
ima.

Therefore, a simulation is made with Weitendorf
ratios of the same matrix of responses of alternatives
to objectives as in Table 1. In comparison to the
square roots ratios presented in Table 1, Table 2
shows the results of the application of the Weitendorf
Ratios.
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Table 2. Multiple Objectives Optimization with Weitendorf Ratios

2a —Matrix of Responses of Alternatives to Objectives: (x;;)

1. 2. 3. 4. S. 6.
IRR Payback New Inv. New V.A. Bal. of Paym.
Projects (%) Period (10°€) Employm. (10°€) curr. acc.
(in years) (in jobs) (discounted) (10°€)
MAX MIN MAX MAX MAX MAX
Project A 12] 5 4.5 750 800 150
Project B 12 7 3 800 600 200
Project C 10 9 25 900 850 150

2b - Responses minus minimum for maximization or
maximum minus responses for minimization

Projects
Project A 2| 4 2 0] 200 0|
Project B 2 2 0.5 50 0 50
Project C 0 0 0 150 250 0
2¢ — For the denominator: maximum minus minimum
r ) 4 2 150] 250] 50
2d - Data 2b divided by 2c and additive method with Weitendorf
ratios sum rank

Project A 1 1 1 0 0.80000 0 1.80000 2
Project B 1 0.50, 0.25  0.333333 0 1 2.0833
Project C 0 0 0 1 1 0 1.0833 3

2e - Reference Point Theory: co-ordinates of the reference point equal to
the maximal criterion values

s ‘ 1 ‘ 1 1 1 1 1
2f - Reference Point Theory: deviations from the reference point

max rank min
Project A 0| 0 0 1 0.20) 1 1 1
Project B 0 0.50) 0.75 0.666667 1 0] 1 1
Project C 1 1 1 0 0] 1 1 1

Thousands and thousands of other matrices of responses of alternatives to objectives with the same outcomes
of formulae (7) and (8), as given in Tables 2b and 2c, will lead to the same ranking. What is more, the same results
would be obtained. For example, the ranking and final results in Table 3 are the same as in Table 2 and have the
same relations to their maxima and minima even though the matrix of responses taken as a starting point is differ-
ent.

Table 3. Multiple Objectives Optimization with Weitendorf Ratios (second trial)
3a — Matrix of Responses of Alternatives to Objectives: (x;;)

Projects 1. 2. 3. 4. 5. 6.
IRR Payback New Inv. New V.A. Bal. of Paym.
(%) Period (10°€) Employm. (10°€) curr. acc.
(in years) (in jobs) (discounted) (10°€)
MAX MIN MAX MAX MAX MAX
Project A 14 6 7 1000 1200 0
Project B 14 8 5.5 1050 1000 50
3b - Responses minus minimum for maximization or maximum minus responses for minimization
Projects
Project A 2 4 2 0] 200 0]
Project B 2 0.5 50 0 50
Project C 0 0 0 150 250 0
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3¢ - Maximum minus minimum

I 2 4 2 150] 250 50
3d - Data 3b divided by 3c and additive method with Weitendorfratios

sum rank

Project A 1 1 1 0 0.80000, 0| 1.80000]

Project B 0.50 0.25]  0.333333 0 1 2.0833

Project C 0 0 0 1 1 0 1.0833

3e - Reference Point Theory: co-ordinates of the reference point equal to the maximal criterion values
r; 1 ‘ 1 1 1 1 1
3f - Reference Point Theory: deviations from the reference point

max rank min

Project A 0 0 1 0.20 1 1

Project B 0 0.50 0.75]  0.666667 1 0 1

Project C 1 1 1 0] 0] 1 1 1

4.4. Van Delft and Nijkamp (1977) Ratios of
Maximum Value

In the method of maximum value the objectives
per alternative are divided by the maximum or the
minimum value of that objective which are found in
one of the alternatives.

xi' = —
N iy x+ (9)

with: x;" representing the maximum or minimum

x; depending on whether a maximum or a minimum
of an objective is strived for.

As only maxima, minima and the responses are
involved here, the same comments on the spread, the
median and quartiles as mentioned for the Weitendorf
ratios are relevant.

A fundamental problem arises regarding minimi-
zation. The ideal situation for minimization occurs
when zero is attained. This could mean dividing by
zero. If the numerator is not zero the fraction is unde-
fined. Even if in that case a symbolic number, for
instance, 0.001 is given to an alternative, for other
alternatives the result would be negatively biased. It
could solely determine the final ranking of the alterna-
tives, and that is incorrect (an example is given in
Brauers, 2004b: 298).

In any case, the ratios can deviate largely from
the interval [0; 1]. In this way one of the advantages
of the ratio system disappears, namely, the relation
between the ratios can differ by one at most.

Once again, when the Reference Point Theory is
applied, all co-ordinates of the maximal criterion ref-
erence point are equal to one. Indeed, the maximal
criterion values are either the maximum value divided
by itself or the minimum value divided by itself.

4.5, Jiittler (1966) Ratios

For normalization it is also possible to use Jiit-
tler’s ratios:

(10)

NYp T T

As only maxima, minima and the responses are
involved here, the remarks on the spread, the median
and the quartiles, mentioned earlier, are relevant.

If x;" represents a minimum, as the denominator
it can have a zero value. Therefore, the same criticism

as against the van Delft and Nijkamp Method of
Maximum Value can be expressed.

4.6. Stopp (1975) Ratios

If max x;; is desirable:

100x;;
NXj = = an
If min x; is desirable:
. 100)(;
NXij = X (12)
These normalized values are expressed in per-

centages.

As maxima and minima are used, the same criti-
cism as against the Weitendorf Ratios can be ex-
pressed.

Hwang and Yoon (1981: 100) mention the same
formulae but without percentages.

4.7. Korth (1969 a, b) Ratios

lejzl_# (13)
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Here the same criticism as against the van Delft
and Nijkamp Method of Maximum Value and the
Weitendorf Ratios can be expressed as well because
the maximum value is used.

4.8. Peldschus et al. (1983) and Peldschus
(1986, 2007) Ratios for Nonlinear Normalization

If Minimum x;; is desirable:

N Xif :();—[)3 (14)

i

If Maximum x;; is desirable:

X
Xij = (— )2
N i x+ (15)

i

Once again, as only maxima and minima are
used, the same arguments as against the Weitendorf
Ratios are relevant.

5. The Importance Given to an
Objective by the Attribution Method
in MOORA

One objective 1 of nx; cannot be significantly
more important than the other as all their ratios are
smaller than one (see formula (7)). Nevertheless, it
may turn out to be necessary to stress that some objec-
tives are more important than others. In order to give
more importance to an objective it could be multiplied
with a Significance Coefficient (for an example see
Brauers et al, 2007).

The Attribution of Sub-Objectives represents an-
other solution. Consider the example of the purchase
of fighter planes (Brauers, 2002). Economically, the
objectives concerning the fighter planes are threefold:
price, use and balance of payments; however, there is
also military effectiveness. In order to give more im-
portance to military defence, effectiveness is reduced
by, for instance, giving more importance to the maxi-
mum speed, the power of the engines and the maxi-
mum range of the plane. Anyway, the Attribution
Method is more refined than the Significance Coeffi-
cient Method: a more comprehensive characterisation
is possible when the Attribution Method is applied.
For instance, for employment a significance coeffi-
cient of 2 is replaced by two sub-objectives character-
izing the direct and the indirect use. In Table 1c for
Project A, 2 x 0.52868 is changed by two separate
numbers characterizing the direct and the indirect side
of employment. However, it is not always easy to find
enough sub-objectives on which the stakeholders
would agree.

Willem Karel M. BRAUERS, Edmundas Kazimieras ZAVADSKAS

In the Reference Point Theory the Min-Max met-
ric is considered to be the second best method. Is this
a correct choice?

6. Is the Min-Max Metric the Best
Choice for Reference Point Theory?

6.1. Reference Point Theory as a Very
Respectable Theory

The history of the development of the Reference
Point Theory is rather long. The foundations of the
theory were laid by Tchebycheff (1821-1894) and
Minkowski (1864-1909) (see: Karlin and Studden,
1966; Minkowski, 1896, 1911). For further
development of the theory significant contributions
were made by Benayoun et al. (1971); Wierzbicki
(1977, 1980, 1982); van Delft and Nijkamp (1977);
Steuer (1989a, 1989b and Steuer and Choo, 1983),
Nakayama and Sawaragi (1983), etc. Goal
programming represents another development in this
sphere; here names such as Lee (1972), Dyer (1972),
Tamiz and Jones (1996), etc. must be mentioned.

The choice of the reference point, the distance
and the characteristics of the objectives determine the
use of the Reference Point Theory (Brauers, 2004b:
156-165).

A method called “TOPSIS” (Technique for Or-
der Preference by Similarity to Ideal Solution) is of
particular interest for practitioners (Zavadskas, 1986;
gaparauskas and Turskis, 2006; Zavadskas and Antu-
cheviciené, 2006).

6.2 1. TOPSIS a Better Choice for the
Reference Point Theory?

TOPSIS is a Reference Point Theory which was
developed a bit later than the other theories (Hwang
and Yoon, 1981: 128).

TOPSIS is “based upon the concept that the cho-
sen alternative should have the shortest distance from
the ideal solution” (Hwang and Yoon, 1981: 128)
which is, in fact, the aim of every Reference Point
Theory or an ideal point, as it is called. The distinc-
tion between the TOPSIS method and the MOORA
method lies in the definition of distance and in the fact
that the ideal point and, ipso facto, each alternative
have many co-ordinates corresponding to the number
of attributes (a vector). Moreover, an attribute can ask
for a maximum or for a minimum attainment. The
choice of the distance function and ways to handle
maxima and minima make TOPSIS debatable (Za-
vadskas et. al, 2006; Opricovic and Tzeng, 2004,
2007)
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6.2.1. What is Meant by the Shortest
Distance?

In TOPSIS the Euclidean distance is chosen to
define the shortest distance. Euclidean distances are
represented by radii of concentric circles, concentric
spheres and, in general, hypersurfaces around the
ideal point as a central point. Therefore, according to
the definition offered by Minkowski, Euclidean dis-
tances are convex: a hypersurface is called convex if it
contains with any two points the entire segment join-
ing these two points (Minkowski, 1896: 200; Min-
kowski, 1911: 103; Pogorelov, 1978: 9). Conse-
quently, in the calculation of Euclidean distances non-
convexity (as required by Consumer Sovereignty) is
disregarded. On the contrary, in the Tchebicheff Min-
Max Metric only one (the largest) distance per alter-
native is kept in the process of calculation; therefore,
non-convexity is taken into account.

Calculation of Euclidean distances leads to many
similar results. For instance, for the ideal point
(100,100) the midway solution (50;50), the extreme
positions (100;0) and (0;100) but also (60;40),
(40;60), (30;70) and (70;30) have the same Euclidean
distances. Even worse, an infinite number of points
belonging to the same hypersurface have the same
Euclidean distance.

Nevertheless, it is possible that the hypersurfaces
are not complete. Everything depends on the philoso-
phy regarding the ideal point. If the ideal point is a
Utopian Criterion Point no co-ordinate of an alterna-
tive can surpass the corresponding co-ordinate of the
ideal point. This could be the case in Performance
Management when the requirements are very high.
For instance, in general education the requirements of
all subjects of the curriculum could be very high. In
the case of choosing marriage candidates the require-
ments for beauty and cooking could, for instance, be
lower but a very high level of intelligence could be
required.

If the ideal point is called a Reference Point it
will have as co-ordinates the highest corresponding
co-ordinates of the alternatives. In fact, a reference
point is not an optimum point. Therefore, such a situa-
tion is sometimes called a Satisficing Result or
Bounded Rationality as it seems that the stakeholders
are completely satisfied if the realistic reference point
is reached (Wierzbicki, 1982; Ahituv and Spector,
1990). If a new alternative is introduced, the co-
ordinates of the reference point could be surpassed. A
new reference point could be chosen.

Once again, when the Tchebicheff Min-Max
Metric is applied different ideal points can be chosen
without difficulties. The only problem may occur if
one or more co-ordinates of a newly introduced alter-
native are larger than those of the existing reference
point. In this case the order of the preferences for all

alternatives may change. In order to avoid this, the
previously established reference point can be main-
tained, but then negative distances may arise. If, for
example, the reference point is r* (15000; 6500; 400)
and a new alternative is M (15000; 12000; 0), the
deviation for the second co-ordinate will be: - 5500.
Therefore, absolute values were introduced in the
min-max metric. If this deviation is not allowed, the
alternative is fined for 5500 by changing the maxi-
mum in a minimum for that response of the alterna-
tive to that objective.

6.2.2. How to Handle Maxima and Minima

After normalization and attribution of weights
TOPSIS proposes two kinds of reference points: a
positive and a negative. The positive reference point
has as co-ordinates the highest corresponding co-
ordinates of the alternatives (the lowest in case of a
minimum). The negative reference point has as co-
ordinates the lowest corresponding co-ordinates of the
alternatives (the highest in the case of a minimum).
With regard to these two kinds of reference points
Euclidean distances are calculated. Consequently,
each alternative will have two outcomes. Let us call
them nyj+ and ny;j.. In order to come to a single solu-
tion, TOPSIS proposes the following formula which
is rather arbitrarily chosen (Hwang and Yoon, 1981:
128-134):

NYENY i NV tNY - (16)

with: j = 1,2,...,m; m representing the number of
alternatives

In addition, Opricovic and Tzeng (2004: 450)
conclude that the relative importance of the two out-
comes is not considered, although it could be a major
concern in decision making.

7. General Conclusions

Several alternative solutions to a problem of util-
ity must be suggested. The notion of utility has always
been a crucial point for researchers in multi-objective
decision making. For us the notion of utility is prob-
lematic in four aspects: the choice of units per objec-
tive, the normalization, the optimization and the im-
portance given to an objective.

Ratio development can be a full-fledged method
for multiple objective optimization. It can also serve
as an additive method with ratios for MOORA.
Square roots ratios are the most suitable for the Refer-
ence Point Method with a Maximal Criterion Refer-
ence Point, while the Voogd ratios are the second
best. On the basis of mathematical logic and with
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reference to several simulations all other methods are
considered to be of no value.

At first glance the Weitendorf Ratios look prom-
ising. Several tests, however, proved that the method
is ambiguous. This is understandable as, regarding the
minimum and the maximum, the spread, the median
and the quartiles can vary and make the series not
univocal. In addition, in the Van Delft and Nijkamp
Ratios of Maximum Value, in the denominator a zero
value as a minimum can appear making the results
undefined. The abovementioned remarks are also
relevant to the Juttler, Stopp, Koérth and Peldschus
Ratios. The ratios a la Schirlig are of another kind.
As one of the alternatives is taken as a reference with
each other alternative the outcome will be different.
Of course, minima and maxima are very important
notions in many fields of sciences. Unfortunately,
they are not sufficient to properly characterize and
optimize a matrix of responses of alternatives to ob-
jectives.

It is taken for granted that every objective can be
measured either directly or by alternative measure-
ment. Is a final ranking universally accepted? Arrow
is right in claiming that “obviously, a cardinal utility
implies an ordinal preference but not vice versa”
(1974: 256).

What regards the square roots ratios and the
Voogd sum ratios, one objective cannot be very much
larger than another as their ratios are smaller than one.
However, it may be necessary to consider some objec-
tives more important than others. How is it possible to
take this importance into account? The traditional (but
not the best) way is to use weights. To many stake-
holders it may be difficult to reach an agreement re-
garding the choice of weights. A solution could be
reached by the analysis of objectives in Sub-
Objectives.

In the Reference Point Theory preference is
given to the Tchebycheff Min-Max Metric. A refer-
ence point per objective possesses as co-ordinates the
dominating co-ordinates of the candidate alternatives.
For minimization the lowest co-ordinates are chosen
and that is more logical than in the TOPSIS method.
When the TOPSIS method is applied to two kinds of
reference points, a maximum and a minimum, are
arrived at, thus making the co-ordination of the sets of
points extremely difficult.

The following conclusions regarding the
MOORA method can be drawn:

1) Square Roots Ratios are chosen as the best
choice for MOORA; Voogd Ratios are the second
best.

2) Eventually, more importance to an objective is
given by weights or by replacing the objective by
different sub-objectives.

3) The ratios per alternative for the objectives to
be maximized are added. The ratios per alternative for
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the objectives to be minimized are subtracted. The
general total per alternative will compete in a ranking.
4) The ranking is established.
5) The Reference Point Theory with the Min-
Max Metric (but not with TOPSIS) will be used as a
control instrument.
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DIDKRECIUJU ALTERNATY VU DAUGIATIKSLIS OPTIMIZAVIMAS SANTYKIU ANALIZES
PAGRINDU
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Edmundas Kazimieras Zavadskas
Vilniaus Gedimino technikos universitetas, Lietuva

Remiantis santykiy analize buvo suformuoti du metodai, skirti daugiatiksliam optimizavimui su diskre¢iomis
alternatyvomis. Pirmasis metodas yra MOORA (daugiatikslis optimizavimas remiantis santykiy analize), kuris veikia
kaip atsakymy matrica tiksly alternatyvoms, kurioms yra taikomi santykiai. Sie santykiai laikomi geriausiu pasirinkimu i3
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dydi. Geriausias budas tikslui suteikti didesni reikSminguma yra §j tiksla pakeisti papildomais tikslais. Antrasis metodas
yra atskaitos tasko metodas. Jis paremtas ta pacia argumentacija kaip ir MOORA. Atskaitos tasko metodas yra taikomas
pirmosios MOORA dalies rezultatams patikrinti.

Willem K. M. Brauers holds the following degrees: Doctor of Philosophy in Economics (University of Leuven), Master of
Arts in Economics (Columbia University, New York), Master of Arts in Management and Financial Sciences, Master of Arts in
Political and Diplomatic Sciences and Bachelor of Philosophy (University of Leuven). He is a professor at the Faculty of Applied
Economics and at the Institute for Development Policy and Management of the University of Antwerp. He is a former professor at
the University of Leuven, the Belgian War College, the School of Military Administrators, and the Antwerp Business School. He
was a research fellow in several American institutions, such as the Rand Corporation, the Pentagon, the Institute for the Future, the
Futures Group and extraordinary advisor to the Center for Economic Studies of the University of Leuven. He was a consultant in
the Belgian Department of National Defence, the Department of Industry in Thailand, the project for the construction of a new port
in Algeria (the port of Arzew), in the international seaport of Antwerp and, generally, he was a consultant for electrical work. He
was the Chairman of the Board of Directors of SORCA Ltd. Brussels, Management Consultants for Developing Countries, associ-
ated with the group of ARCADIS. Presently he is the Chairman of the Board of Directors of MARESCO Ltd. Antwerp. He is a
member of many international scientific organizations. Research interests: optimizing techniques with several objectives, forecast-
ing techniques, public sector economics (such as for national defence and for regional sub-optimization), input-output techniques.

Edmundas Kazimieras Zavadskas holds a Sc.D. degree, is a professor, Doctor Honoris Causa of the universities of Poznan,
Saint Petersburg and Kiev, vice rector of Vilnius Gediminas Technical University (Lithuania). He is a member of the Lithuanian
Academy of Sciences, the president of the Lithuanian Operational Research Society, the president of the Alliance of Experts of
Projects and Building of Lithuania. He is the editor-in-chief of the journals: Journal of Civil Engineering and Management,
Technological and Economic Development of Economy, an editor of the International Journal of Strategic Property Management.
In 1973 he was awarded a Ph.D. degree in building structures. He worked as an assistant, senior assistant, associate professor,
professor at the Department of Construction Technology and Management. In 1987 he was awarded a Sc.D. degree at Moscow
Civil Engineering Institute (construction technology and management). He is an author of 14 monographs in Lithuanian, English,
German and Russian. Research interests: building technology and management, decision-making theory, automation in design,
expert decision support systems.

Willem Karel M. Brauers yra gavegs Siuos mokslo laipsnius: ekonomikos moksly daktaro (Leuveno universitetas),
ekonomikos magistro (Kolumbijos universitetas, Niujorkas), vadybos ir finansy bei politikos ir diplomatijos moksly magistro



Multi-objective Optimization with Discrete Alternatives on the Basis of Ratio Analysis 41

(Leuveno universitetas). Jis yra Antverpeno universiteto Taikomosios ekonomikos fakulteto ir Politikos plétros bei vadybos
instituto profesorius. Profesoriaus pareigas éjo Leuveno universitete, Belgijos karo koledze ir Antverpeno vadybos mokykloje. Jis
bendradarbiavo su keletu Amerikos instituty bei buvo ypatinguoju Lueveno universiteto Ekonomikos moksly centro pataréju,
Belgijos krasto apsaugos ministerijos bei Pramonés departamento Tailande, naujo uosto Alzyre statybos projekto, taip pats
tarptautinio jlry uosto Antverpene statyby konsultantu. Buvo akcinés bendrovés SORCA Ltd. Briuselyje direktoriy tarybos
pirmininku bei vadybos konsultantu besivystantioms 3alims. Siuo metu jis yra akcinés bendrovés MARESCO Ltd. Antverpene
direktoriy tarybos pirmininkas. W. K. M. Brauers yra daugelio tarptautinio mokslo organizacijy narys. Mokslo interesy sritys: keliy
tiksly optimizavimo metodika, prognozavimo metodika, vieSojo sektoriaus ekonomika.

Edmundas Kazimieras Zavadskas yra habilituotas moksly daktaras, Poznanés, Sankt Peterburgo ir Kijevo universitety
garbés daktaras, Vilniaus Gedimino technikos universiteto pirmasis prorektorius. Taip pat jis yra Lietuvos moksly akademijos narys
korespondentas, Lietuvos operacijy tyrimo asociacijos ir Lietuvos statiniy ir projekty eksperty sajungos prezidentas, trijy zurnaly
Journal of Civil Engineering and Management, Technological and Economic Development of Economy, International Journal of
Strategic Property Management vyriausiasis redaktorius. 1973 m. jam suteiktas daktaro laipsnis statybos konstrukcijy srityje. Taip
pat &jo asistento, vyr. asistento, docento bei profesoriaus pareigas Statybos technologiju ir vadybos katedroje. 1987 m. Maskvoje,
Statybos inzinerijos institute, jam suteiktas habilituoto daktaro laipsnis. Autorius yra parases 14 monografijy lietuviy, angly,
vokieéiy ir rusy kalbomis. Moksliniy interesy sritys: pastaty technologija ir valdymas, sprendimy priémimo teorija, projektavimo
automatizavimas, ekspertinés sprendimy paramos sistemos.



