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Abstract. The article deals with ways of flow distribution in the transport network in order to minimize transpor-

tation costs. It describes the structure of transportation costs and principles of defining the dependence on the volumes 
of flow in pertinent transport modes, such as railways and road transport. It analyses classical models of flow distribu-
tion and presents a new approach to flow distribution in a transport network, based on flow optimization in individual 
contours or groups of contours of the network.  The suggested approach is more rigorous than classical ones in 
mathematical terms and therefore avoids problems of heuristic nature that characterize classical approaches. The sug-
gested approach has been tested in experimental calculations. 
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Introduction 
 
Transportation is an economic sector that re-

quires a lot of resources, the normal operation of 
which involves considerable labour, material and 
energy resources, while its modernization and fur-
ther development require major investments. There-
fore, it is very important to reduce these costs by 
employing technical, organizational and other 
means. One of the crucial means for reducing trans-
portation costs is to distribute flows of cargo and 
passengers in the transport network in an efficient 
way. This, first of all, requires solving a problem 
which is known in the theory as the problem of op-
timal distribution of flows in the network. Its opti-
mality criterion is the minimum of transportation 
costs. Based on the result, rational schemes of trans-
portation of cargo and passengers can be developed. 

To solve this problem, it is not enough to make pilot 
assessments and primitive calculations. The com-
plexity of these problems, as demonstrated by large 
volumes and non-linear relations, inevitably requires 
state-of-the-art approaches and use of modern com-
puting equipment.   

Presently, there is a wide range of approaches to 
optimizing transportation flows, where the transpor-
tation process is described in both linear and non-
linear models (Bertsekas 1991; 1998; Gersht, Shul-
man, 1983; Kennington, Helgasson, 1980; Magnati, 
Wong, 1984; Minoux, 1989; Steenbrink, 1987; Gol-
shtein, Sokolov 1995; Lifshich, 1986). In view of the 
importance and relevance of the problem, new re-
sults in this area are also important, especially if they 
can be used for practical purposes—solving prob-
lems of greater scope.  

The article presents an approach to optimizing 
the distribution of transportation flows following a 
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new approach, expanding the possibilities for solv-
ing such problems. The suggested approach is quite 
effective and can have a practical application.  

 
 
1. General description of a transport 
system  
 
Transport flow can be defined as the movement 

of vehicles carrying various types of cargo and pas-
sengers between different geographic destinations or 
within a certain region. The constituents or products 
of the transport flow are the components of the 
flow—flows of cargo of various types or passengers 
of various categories. 

The transportation of passengers and cargo is 
carried out in a transport system consisting of fixed 
facilities—roads, railways, transport means (rolling-
stock), using fixed facilities, and an organizational 
structure, ensuring the efficient usage of transport 
means and fixed facilities, and their interface. This 
system is usually described as a transport network 
consisting of nodes and arcs linking these nodes. The 
network nodes usually correspond to real transport 
junctions: stations, cities, reloading points, transition 
points (crossroads), and the arcs correspond to com-
munications that connect the transport junctions—
roads, railways, etc.  

Each element of the transport network is charac-
terized by one of its possible states and its load. The 
state of an element demonstrates its technical level. 
For example, a railway line can have some of the 
following states: a one-way line, a one-way line with 
automated blocking or a two-way line. Similarly, 
roads may be discriminated by the number of lanes. 
Obviously, each element of the network can be of 
only one possible state at a given point in time. The 
load of the network nodes may be defined as the 
volume and structure of products to be transported to 
or from a certain point. The load of the node is ex-
pressed by a vector, the number of coordinates of 
which equals to the number of products carried in 
the transport network. If any coordinate of this vec-
tor is equal to 0, this node is transitional with respect 
to the corresponding product; if it is positive, the 
node is a departure point (producer). The node is a 
destination point (user) if this coordinate is negative. 
Loads on the nodes determine transportation vol-
umes in the transport network.  

 The load on a network arc is the sum of all 
constituents of the flow carried through it. The load 
of the arc is expressed by a vector, whose number of 
coordinates is also equal to the amount of carried 
products.  

Flows in a transport network must meet the 
conditions of flow continuity, which relate the net-
work topology and loading on its elements, namely, 

that the difference of product volumes transported to 
and from each node in the network must be equal to 
the load of that node by a respective product. 

Transportation in a transport network is related 
to costs, which consist of direct costs, costs related 
to transportation of cargo or passengers (e.g., fuel 
costs), and maintenance costs of all components in 
the transport system. If management of certain vol-
umes of transportation requires a reconstruction of 
individual elements in the network, it is also neces-
sary to account for expenses for the development and 
modernization of the transport system. All expenses 
are comparable. Namely, we must analyse forced 
expenses, recalculated for a single time period. Ex-
penses for transportation within a transport network 
are additive with respect to elements in the transport 
network, but are not additive with respect to flow 
constituents. If states of the network elements do not 
change, the main expenses are the maintenance costs 
of vehicles. The amount of these expenses per each 
element depends on the technical state and the load 
of this element. The dependence of maintenance 
costs on the load of a transport element is non-linear, 
because when the load approaches the margin of 
throughput for an element, expenses grow much 
faster than the load. This is not the only reason for 
this non-linear dependence. There are other natural 
reasons that differ according to the transport mode. 
If the state of the transport element does not change, 
this dependence is described by a convex function 
(Davulis, 1997). The exploitation costs may be re-
duced by reconstruction of the element to increase its 
throughput. In this case, however, the dependence of 
expenses and transportation volumes through an 
element becomes more complicated and is generally 
described as a non-convex function. 

The distribution of transportation flows in a 
network defines the rational variation of passenger 
and goods flow in a transport network that meet the 
needs for the transportation of goods and passengers. 
Because there may be many such variations, there is 
need for criteria to measure them. The chosen crite-
ria are the minimum individual and public expenses 
for transportation. Therefore, the problem of distri-
bution of transportation flows may be described as 
an optimization problem. 

 
 
2. Problem model for the distribution 
of transportation flows in a network   
 
A model for the distribution of transportation 

flows assumes that flows of passengers and cargo 
carried in a transport network must be distributed in 
such a way that all needs of transport users would be 
satisfied at the lowest transportation cost. The prob-
lem of flow distribution can be analysed as a deter-
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mined static problem, given invariable technical 
states of the network elements. Volumes of products 
of all types (types of cargo and categories of passen-
gers), the number of which is defined as n, which 
must be sent from their departure points and received 
at their delivery points, the topology of the transpor-
tation network and the technical characteristics of its 
elements, determining the dependence of expenses 
for transportation via these network elements on the 
loads on these elements, i.e. on the volume of flows 
within them, are given. The topology of the transport 
network is described by an oriented graph with M 
nodes that correspond to real transportation points, 
and L arcs that correspond to the roads connecting 
the transportation points. The main constraints of the 
model of optimal flow distribution are flow continu-
ity conditions that relate the needs of users, i.e. the 
transportation volumes, network topology, and flow 
volumes in the network arcs.  If the conditions of 
network elements do not change, the quantity of 
transportation costs in each element can be described 
by a convex function on the load of this element in a 
rather precise way. Let’s assume that the transporta-
tion costs are additive with respect to the network 
elements and are concentrated in the network arcs. 

Under these assumptions, the product flow dis-
tribution in a transport network can be described by 
such a model:   

∑
=

=
L
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,BSX =                                                       (2) 

here )(Xf  is the function that expresses de-
pendence of total expenses of transportation on the 
load of the network by a general flow, where 

);,,( )()1( nxxX K=  )()(
1

)( ,,( j
L

jj xxx K=  is the 
vector of the load on the network by product j; 

)( ll xf   is the function of expenses (price) of a 
transport element (arc) that expresses the depend-
ence of expenses on the load of the arc, where 

;,,( )()1( n
lll xxx K=  )( j

lx   is a variable expressing 
the load of arc l by product j; S  is a quasi-diagonal 

nn×  matrix, the main diagonals of which there are 
the node-arc incidence matrices of the given net-
work, with zeros elsewhere; ),,( )()1( nbbB K=  is a 
general vector of the load of the network nodes that 
defines transportation volumes and their structure.  

),,( )()(
1

)( j
M

jj bbb K=  is the vector of the load of the 
network nodes by product j.  

The system of equations (2) expresses condi-
tions of flow continuity. If the transport network is 
described in an oriented graph, negative flows are 
also possible, indicating that products are transported 
in the direction opposite to the arc orientation. The 

general optimality criterion f (X) of the model is a 
convex function as a sum of the convex functions. 
Real functions of expenses, though convex, are most 
often non-smooth, which makes it difficult to solve 
the problem (1) – (2). The points at which the 
smoothness of the function is violated are called 
critical points. The paper deals with cases when the 
smoothness of the expense function is violated in a 
set of points, defined by linear equations called criti-
cal equations. Critical equations with only one vari-
able )( j

ix  with a non-zero coefficient are called main 
equations, and this variable is called the main vari-
able. The arc is called critical if its load satisfies the 
critical equation of the expense function of this arc.  

 
3. Modelling the expense function  
 
The modelling of the expense functions is an 

independent and complex problem. The nature and 
specific expression of these functions depend on 
whether the system is normative or descriptive, on 
the transport mode and technical state of its ele-
ments. A specific expression of the expense function 
and the degree of its structure specification depend 
on both—the preciseness of the desired solution and 
on the availability of the necessary initial informa-
tion and its accuracy. Usually, expenses are calcu-
lated per 1 km of road, and the total expenses for a 
road or its part are derived by multiplying expenses 
per 1 km by the length of the road. Expense func-
tions calculated in such a way will differ only be-
cause of the level of the technical state of the road, 
and their number will depend on the number of the 
possible states of the elements in the transport sys-
tem.  

In normative systems, flows are planned based 
on the criterion of the economic-technical factors 
only, which reflect the transportation expenses of the 
transport system or the entire economy of the coun-
try. Freight railway transportation represents a clas-
sical example of a normative system.  

As a rule, types of a railway line are distin-
guished by the number of roadways within it—
whether it is one-way line, one-way line with a by-
pass, or a two-way line. Each variant is described by 
its own expense function. In all cases, expense func-
tions are dependent on the flow or heaviness, ex-
pressed by the number of trains moving within a 
certain period of time in both directions. In the case 
of freight railway, expenses per one km of road are 
expressed by a general formula (Vasileva et al., 
1981) 

).(),(),( mpd NfXXfXXf += −+−+       (3) 

here  −+ XX  ,  are the volumes of flows in each 
direction; ),max( −+= NNNm  is the heaviness of 
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transport moving in one direction on a loaded trip, 
i.e. to the direction of higher heaviness; −+ NN  ,  are 
the numbers of freight trains to each direction.  

Transition from flow volume to transport heavi-
ness and vice versa is rather simple as those values 
are in linear relation 

.PNX =                                                      (4) 

The first component of the expense function df  
is an expense component that corresponds to the ex-
penses of a two-way line. The second component pf  
represents additional expenses related to downtime 
in a one-way line with or without a bypass. 

Maintenance costs in a two-way line are the 
sum of six expense components: 

∑=−+
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where 2 ,  ggi  are the direct costs of transporta-
tion in both directions; 3g  represents direct costs 
while returning empty wagons; 4g  is expenses pro-
portional to the time of transportation; 5g  is ex-
penses proportional to the distance of cargoes trans-
portation; 6g  is expenses proportional to freight 
volumes, expressed by flow volumes  and traffic 
heaviness in the following way:   
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Coefficients 3  ,2  ,1 aaa  depend on the length of 
the road part, type of locomotive (diesel locomotive 
or electric locomotive), the length of the station way, 
load on the axle of a loaded or empty wagon, price 
for diesel fuel, electric power, etc. The value of the 
coefficient 3a  depends on the returning direction of 
an empty wagon. The value of the coefficients in 
other expressions depends on the price of the loco-
motive hour, the price of the axle hour, expenses for 
work of teams servicing the locomotive, expenses 
per kilometre of the locomotive, kilometre of the 
axle, etc. 

Additional expenses for a one-way railway line, 
related to a road intersection, are expressed as fol-
lows: 

 
( )
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=                             (6) 

Coefficients ib  in expression (6) are calculated 
based on the number of stops the trains make at in-
tersections, downtime, and expenses for the train to 
start up and stop at stations, etc. 

Expenses for a one-way line with a bypass with 
up to 70% road load are calculated in the same way 
as those for a two-way line, and above this load the 
additional expenses per 1 km are measured as fol-
lows: 

,)()( 2bNaNf mmp −=                                       (7) 

where coefficients a and b depend on the value 
of the road throughput and other technical parame-
ters. 

The methodology for calculation of all these co-
efficients is presented in the paper (Vasileva et al., 
1981). This methodology could be used for railways 
of other countries, provided it is adjusted respec-
tively, given present economic conditions.  

In descriptive systems, interests of individuals 
or their groups and other subjective factors are of 
decisive importance for determining flows. Each 
transport participant follows an individual criterion 
of minimal expenses in those systems. In view of 
specific circumstances, the following criteria can be 
chosen: shortest distance, shortest transportation 
time, lowest transportation costs, most secure trans-
portation, etc. The formation of a general criterion 
for a system is based on the hypothesis of collective 
behaviour, by assessing preferences of transport par-
ticipants on the basis of observation data.  

Road transport is a characteristic example of a 
descriptive system. Definite dependence of expenses 
on specific factors is difficult, but they may be con-
sidered adequate for real processes. In road transpor-
tation, expense functions are defined by the follow-
ing components:  

a) expenses dependent on the time of driving a 
vehicle.  

b) expenses required for the operation of the ve-
hicle—fuels costs, suspension, repairs, etc.  

c) expenses related to accidents.  
Scientists of the Dutch Institute of Economics 

suggested specific functions of expense types, ex-
pressed as gradual functions of one variable describ-
ing the degree of usage of road throughput, namely, 
traffic heaviness N in one lane (Steenbrink, 1987). 
The dependence of the expenses that are subjected to 
the time of driving of a vehicle on traffic heaviness 
in one lane is expressed as follows: 
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where a1, a2, a3, a4 are coefficients derived from 
statistical data. 

Functional dependence of expenses related to 
the operation of a vehicle and expenses related to 
accidents is expressed as follows: 

5

21 ⎥
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⎜
⎝
⎛+=

c
NbbNfa                                          (9) 

 
The expense function which includes expenses 

necessary for transportation (e.g. fuel costs, payment 
for the carriers, etc.) and expenses for vehicle repairs 
depend on transportation volumes, and thus reflect 
variable costs. Meanwhile, expenses for the installa-
tion and improvement of transport infrastructure 
(roads, railways, buildings, warehouses, areas for 
passenger transport to stop or for reloading or stor-
ing of cargo, etc.), that is, investments required to 
improve a transport element have fixed costs.  

Building of a new road for vehicles or the ex-
pansion of an existing one may throw the surround-
ing environment out of balance. Vehicle exhaust 
pollutes air, soil, water, and the noise has an adverse 
impact on people and fauna. This environmental 
damage depends on both, transport flow volume and 
traffic heaviness. However, it is difficult to quantify 
and measure it. Therefore, this damage is usually 
measured by introducing additional limitations on 
the problem, rather than by an expense function.  

 
4. Classical solutions for the problem of 
flow distribution in a transport network  
 
Classical methods for dealing with flow distri-

bution problems for both normative and descriptive 
systems are divided into two stages. The first stage 
plans the transportation volumes and the structure 
between network nodes, in other words, defines the 
correspondences. All defined correspondences are 
entered into a table called a chess correspondence 
table or a transportation matrix. The second stage 
defines the load on the network elements by distrib-
uting the defined correspondences in the network by 
optimum routes in terms of the chosen criterion.  

There are different principles for modelling cor-
respondences. First of all, they differ depending on 
which system—normative or descriptive—is used 
for defining the correspondences. Descriptive sys-
tems demonstrate a wide range of principles for the 
modelling of correspondences. Here models may 
differ depending on transportation modes and their 
specific features.  

In normative systems, volumes of products pro-
duced and consumed at specific points and their 
structure are usually known. In this case, correspon-
dences are modelled by defining rational transport 

and economic relations from the viewpoint of an 
entire country. Classical or specific transport prob-
lems of linear programming are formulated and 
solved for this purpose. 

If passengers are carried by railway, air or sea 
transport, statistical models of various types are most 
often used. Such models are also quite complex and 
account for many factors. In individual cases, such 
models are used for freight transportation, if the rela-
tionship between suppliers and users is short-term. 

If passengers migrate between certain areas or 
regions, the so-called gravitation models are used to 
define correspondences between centres of these 
regions, which correspond to nodes of a transport 
network. 

The so-called entropic models are mainly used 
for describing passenger correspondences in a city 
transport system. They model all types of travel, re-
lated to going to and from work, for cultural, routine 
and recreational purposes, and by using analogies 
between flows in transport and physical systems. 
These analogies are based on the fact that both sys-
tems contain a lot of uncontrolled interacting ele-
ments. In accordance with laws of thermodynamics, 
such systems aim at the condition of maximum en-
tropy. Models of this type include optimization 
models with an objective function of an entropic 
type. This function usually takes into account prefer-
ences of the transportation participants by defining 

probabilities by means of a statistical survey abp , 
that a transportation participant travelling from point 
a will choose specifically point b as their destination 
point.  

Once the transportation matrix has been created, 
loads on the network arcs by flows of cargo and pas-
sengers are defined. For this purpose, it is necessary 
to define an optimum route for each correspondence 
or its part. Parts of relevant correspondences the 
routes of which include this network arc are added 
together in each network arc. To deal with the prob-
lems of major scope and practical importance, meth-
ods based on the principle of rectification are used 
that can translate a non-linear optimization problem 
into sequence of linear problems. In every linear 
problem, correspondences or their parts are distrib-
uted into the shortest routes in terms of the optimum 
criterion, the “lengths” of their arcs being propor-
tional to partial fluxions of the expense function. 
Although methods for the formation of correspon-
dence routes may differ depending on the type of a 
transport system (normative or descriptive), as may 
the treatment of the optimum criterion, the principle 
model remains the same. 

Optimum routes of correspondences are defined 
based on algorithms for finding the shortest route in 
a network. Though presently a number of such algo-
rithms are known and of them are quite effective, 
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this solution has been exhausted, because various 
known methods differ only in the ways of route for-
mation. On the other hand, these algorithms contain 
a number of heuristic elements, the effective use of 
which requires relevant skills.   

 
5. Suggested method for the optimiza-
tion of flow distribution  
 
In principle, the problem of flow distribution 

(1)–(2) can be dealt with by using any known non-
linear programming method, provided that its scope 
is not overly great. However, problems of practical 
consequence are characterized by significant vol-
umes, and thus possibilities for such solution are 
limited. Any known method will not be effective 
enough or even applicable if certain characteristics 
of the problems, such as large volumes or non-
smooth objective function, are not taken into ac-
count. Therefore, dealing with practical problems of 
flow distribution requires special or modified meth-
ods. The paper suggests an original algorithm, cre-
ated by the authors to solve the problem of flow dis-
tribution based on the modification of the idea of 
cyclic coordinate slope. The key principles of the 
suggested method have been presented in articles 
(Davulis, 1997; 1999). 

 Once the system of equations (2) is 
solved )1( +−= MLnN with respect to independent 
variables (it can be solved in a very simple way, by 
using graph means), the constraints of the problem 
may be described as such:  

,~ DXHX +=                                             (10) 

where H is a quasi-diagonal nn×  matrix, on 
the main diagonal of which are network arc inci-
dence matrices of respective products, and zeros 

elsewhere; X~ is an N-dimensional vector of inde-
pendent variables; D is an L-dimensional vector of 
free terms of the system of equations, whose coordi-
nates, corresponding  to independent variables, are 
equal to zero. In this case, the system of equations 
(10) can be replaced by n independent system of 
equations that correspond to separate blocks of the 
matrix H: 

,,,1      ,~ )()()()( njdxHx jjjj K=+=       (11) 

where )( jH  is the incidence matrix for arcs of 
the j-th network product, whose elements in the case 
of an oriented graph are -1; 0; 1. 

Thus, the system of equations (10) allows the 
problem of conditional optimization (1) – (2) to be 
replaced by non-conditional optimization. As ex-
pense functions for individual elements of a trans-
port network are usually non-smooth, “ditches” may 

occur in the total expense function. This may slow 
down the convergence of algorithms or generally 
they may become “stuck”. The suggested algorithm 
provides for measures to eliminate or at least to 
mitigate such a phenomenon. Independent variables 
in the system of equations (10) always correspond to 
critical loads on the arcs. If, after any step of the op-
timization algorithm, this rule is violated, a proce-
dure for the replacement of an independent variable 
in the system of equations (10) by a relevant basic 
variable must be performed. This procedure requires 
that the optimization be carried out in the direction 
of “a ditch” or close to it, provided that the point that 
corresponds to the flow distribution found is in this 
“ditch”. This can improve the convergence of the 
algorithm. 

The known theorems of graph theory (Christo-
fides, 1976) relate basic and independent variables of 
the system of equations (11) that describe the distri-
bution of an individual product in the network with 
the arcs of the graph that describe the network of that 
product in such a way.  Every arc of the graph tree 
corresponds to basic variables in the system of equa-
tions, while arcs that do not belong to the tree—
namely, free arcs—correspond to independent vari-
ables. This means that values of basic and independ-
ent variables in the system of equations j (11) are 
equal to loads in the relevant tree and free arcs by 
product j. Each column of the incidence matrix 

)( jH corresponds to a different free arc, and non-
zero elements of this column correspond to tree arcs 
included in the contour formed by linking this free 
arc to the tree. Thus, each independent variable  )( j

ix  
in the system of equations j (11) defines the contour 
unambiguously, defined by a free arc i in the net-
work of product j.  

By employing the indicated dependences be-
tween systems of equations describing distribution 
of individual products in the network and arcs of the 
graph describing the  network, systems of equations 
(11) can be replaced by lists of network arcs, with 
tree and free arcs separated, for each product and 
array of the arc load made up of arc load vectors. In 
lists of network arcs, each arc corresponds to its code 
recorded in the load array. Lists of arc codes with 
their load arrays is the most compact way of writing 
systems of equations (11). However, to write sys-
tems of equations in this way, a special procedure is 
required: this procedure must distinguish codes of 
any contour arcs from the list of the network arcs. 
This procedure has been described in a previous pa-
per (Davulis, 1997).  

Solution to the problem can be divided into 
three stages: 1) initial flow distribution; 2) initial 
optimization; 3) main optimization. 
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Initial flow distribution requires transformation 
of the system of equations (2) into system (11) by 
using graph means. This procedure has been de-
scribed in an earlier paper (Davulis, 1997). Upon 
completion of this procedure, we will have a tree 
with arc loads that meet the conditions of flow con-
tinuity; loads of all other arcs are equal to zero. In 
other words, flow corresponds to basic solutions of 
systems of equations (11).  

If the initial tree is selected randomly, corre-
sponding initial flow distribution may be far from 
optimum. Therefore, it makes sense to select a more 
proper tree with better flow distribution in terms of 
the optimum criterion. Initial optimization (iterative 
procedure) may be used to minimize the total func-
tions of arcs of each contour in turn in the set of zero 
loads of these contour arcs. If the load on the tree arc 
that belongs to the contour to be optimized in any 
iteration becomes equal to zero, codes of this arc and 
the free arc which formed this contour in the lists of 
the tree and free arcs are replaced by each other by 
using a relevant procedure. This procedure is re-
peated in cycles for each contour in the network and 
is completed when the tree does not change after 
completion of iterations ML − successively. In the 
case of convex expense functions, this initial optimi-
zation creates flow distribution in the network which 
is closer to the optimum, and this leads to reduction 
of the scope of calculations. 

The main optimization is basically an algorithm 
of contour optimization. The algorithm consists of 
two stages repeated in cycles. The first stage of the 
algorithm is an iterative procedure, in each iteration 
of which the distribution of one product in the net-
work is optimized, given unchanged distribution of 
all other products. In general, the algorithm uses in-
dividual lists of the network arcs for each product. In 
the iteration of the algorithm, in which the distribu-
tion of product j is optimized, the total expense func-
tion of the arcs of each contour is minimized in turn, 
i.e. the following problem is solved for each contour: 

∑
∈≤∆≤
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where j is the number of the product to be dis-
tributed in the network in the given iteration; k is the 
number of the free arc that formed the contour; )( j

ix  

is the initial value of the variable )( j
ix ; j

kI  is the set 
of numbers of the graph arcs belonging to the net-
work contour of product j  defined by arc k; )( j

ike  is 
the coefficient with value of 1, provided that direc-
tions of arc i and free arc k concur in the contour, 
and -1 in the opposite case. This coefficient is equal 

to the element of incidence matrix )( jH  in the line 
of variable )( j

ix  and column of variables )( j
kx .  

The interval of optimization [a, b] is the small-
est interval of the changes in the load on the free arc 
by product j, which reaches zero load of any contour 
by this product. A procedure of single-dimensional 
search is used for the solution of problem (12); this 
procedure is a modification of the golden section 
search. Loads on the contour arcs by product j are 
recalculated respectively if the optimal value of the 
change in the flow of product j and arc k, if it be-
came critical and is replaced in the tree arc list by a 
free arc that defined this contour. This procedure of 
tree replacement corresponding to the replacement of 
the independent variable in the system of equations 
(10) by a basic variable means that we will be able to 
minimize the set of  points in which smoothness of 
the expense function is violated. 

The optimization procedure (12) is repeated in 
cycles for each network contour of product j until the 
condition for terminating of the algorithm is satis-
fied, namely, change in values of the total expense 
function of each contour is lower than the set value 

.1ε  Iterations of the algorithm are repeated in cycles 
for each product until a distribution of the general 
flow is obtained that meets the conditions for termi-
nating the algorithm. If the flow distribution ob-
tained satisfies critical equations of one or two arc 
expense functions of a general form—which include 
at least two coordinates of the arc load vector with 
non-zero coefficients—there is no guarantee that the 
local minimum is found in the required preciseness, 
though the conditions for terminating the algorithm 
are met. Such a situation may mean that the flow 
distribution derived corresponds to the non-
smoothness point of the price function, and optimi-
sation should be continued in the set of points de-
fined by these critical lines and conditions (11), car-
rying out the second stage of the algorithm.  

Critical equations of a general form that meet 
the flow derived are expressed as a system of equa-
tions:  

,,,1      ,0)( PpxLy pipip K===                   (13) 

where )( pipi xL  is a linear function; P is the 

number of critical equations. Variables 
pix  of criti-

cal equations (13) are replaced by independent vari-
ables that express loads of free arcs by using de-
pendencies: 
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where )(ˆ j
ix  is the initial value of the variable 

that expresses the load of the arc i by product j; j
iK  

is the set of numbers of free arcs to which contours 
in the network of product j the critical arc belongs; 

iJ  is the set of numbers of the coordinates of the 
load vector of the critical arc i which are included in 
the critical equation of this arc with non-zero coeffi-
cients.  

Subsequently, the system of equations (13) is 
solved in terms of independent variables N – P and 
thus we get a new system of equations:   

 
,ZHX =                                                     (15) 

where the coordinates of vector X  of the basic 
variables—to be called non-main variables—are a 
part of the coordinates of vector X~ , and the coordi-
nates of vector Z of independent variables are the 
remaining coordinates of vector X~ . System of equa-
tions (15) is recorded in the form of a table, to be 
called a table of non-main variables. With variation 
of the value of independent variable kz , the values of 
those non-main variables that are in the lines of non-
zero elements of column k will also vary. Their val-
ues change in order to meet critical equations (13). 
With a change in the value of a non-main vari-
able )( j

ix , the loads of all arcs in the contour formed 
in the network of product j by arc i will change, re-
spectively. Thus, column k of the table of non-main 
variables defines a group of contours whose loads of 
the arcs by relevant products will change, given 
changes in the value of independent variable kz . 
This group of contours are called related contours.  

The second stage of the algorithm is a procedure 
of iterative one-dimensional optimization, which is 
repeated in cycles for each independent variable kz  
until the condition for terminating the algorithm is 
met. It employs the same optimization procedure as 
in the first stage of the algorithm, only in this case 
the summary expense function of all related contour 
arcs is minimized. The optimization procedure in the 
case of related contours is written as follows:  
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where [a, b] is the minimum range of the inde-
pendent variable kz  which reaches zero load of any 
arc of the related contours by a product the flow of 
which changes in the curve, given changes in the 
independent variable kz ; kL  is the set of curves of 
all related contours.  

Any arc of the related contour group belongs to 
one or several contours of this group, defined in the 
network of different or the same product. Therefore, 
such an arc may be subject to changes in the load by 
either one or several products, while load changes 
have a linear dependence on changes kz∆  in the 

independent variable kz . Any change in the load on 
arc l of the related contours by separate products are 
expressed in a general formula: 
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here j
lS  is the set of numbers of the free arcs to 

which contours formed in the network of products j 
arc l belong; j

lJ  is the set of numbers of those prod-
ucts whose flows change in arc l subject to changes 
in variable kz . 

If some arcs of the related contours become 
critical after the second stage of the algorithm, sys-
tem of equations (13) is supplemented by new criti-
cal equations, and the aforementioned procedure is 
followed. The second stage of the algorithm is com-
pleted when no new critical arcs occur after routine 
iteration or when after each iteration, consecutively 
decreasing of the number of the independent vari-
able kz , the last iteration determines an optimal 
change in the single remaining independent vari-
able 1z . This is followed by a return to the first stage 
of the algorithm and the described procedure is re-
peated until the flow does not change after the first 
or second stage of the algorithm. This distribution 
represents a local solution to the problem derived 
with a given precision.   

The second stage of the algorithm may be nec-
essary if critical sets are described by critical equa-
tions of a general form. When critical equations are 
only the main ones, the first stage of the algorithm is 
sufficient, as the procedure for altering the graph 
structure by changing the codes of free and tree arcs 
in the arc lists guarantees convergence to the solu-
tion of the problem determining it with given preci-
sion.  

The suggested algorithm demonstrates a number 
of advantages compared to traditional approaches. It 
is rigorous in mathematical terms; therefore, it pre-
sents no heuristic problems, unavoidable in classical 
approaches. The quality of flow distribution in terms 
of the optimum criterion depends on the volume of 
the part of the correspondence to be distributed in 
the network, accuracy of calculations and frequency 
of recalculation of differential expenses. The rela-
tionship between these parameters is often compli-
cated. The best relationship between these parame-
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ters is usually defined experimentally. On the other 
hand, classical approaches are not applicable in the 
case of non-smooth expense functions, particularly, 
when “ditches” in the values of these functions ap-
pear. As a result, the convergence of classical ap-
proaches slows down or may become “stuck” far 
from the point that would constitute a solution. To 
avoid this situation, the algorithm must be supple-
mented by special complex procedures based on the 
approximation of the expense function in its field of 
non-smoothness by a smooth function,  accelerating 
its convergence. 

The suggested algorithm does not require the 
creation of a transformation matrix, and ensures a 
solution of the required precision. Meanwhile, the 
classical model of solution in two stages: definition 
and distribution of correspondences may not always 
ensure a solution close to the optimum. The algo-
rithm employs an efficient procedure of a one-
dimensional optimization—namely, a modified 
golden section procedure. It is therefore sufficiently 
effective from the point of view of these calcula-
tions, as also demonstrated by practical calculations. 
The most important advantage of this algorithm lies 
in that it is applicable in the cases of non-smooth 
functions as well.  

The algorithm has been tested in the experimen-
tal calculations, solving flow distribution problems 
in real transport networks described in other publica-
tions. A number of classical approaches were com-
pared to the proposed model in the calculation of the 
distribution of goods flows in a network consisting 
of 43 transport points and 49 railway lines linking 
them, of which 27 are one-way lines, and are 22 two-
way lines. As indicated in the paper (Vasileva et 
al.,1981) this network is part of a real railway net-
work. This paper presents the calculation results ob-
tained by classical approaches by using simplified 
transportation expense functions, as well as depend-
ence of the values obtained by optimum criterion 
(expense function) on the number of iterations.  

The transportation flow distribution was calcu-
lated by using the same transportation expense func-
tions in the same network; it was calculated by a 
using simplified version of the suggested contour 
optimization algorithm wherein only in the first 
stage of the algorithm was used. The calculation re-
sults and their comparison with results obtained by 
traditional approaches have been presented in a pre-
vious article (Davulis, 2000). After performing 50 
iterations, the contour optimization algorithm pro-
duced a result much similar to the optimum distribu-
tion of flows obtained by classical approaches after 
the same number of iterations. The value of the op-
timum criterion (transportation costs) obtained by 
the suggested approach was by 2-5 percent lower 
than that obtained by traditional approaches, and 

about 3 percent higher if compared to the result ob-
tained by the consecutive distribution approach, 
which employs special measures accelerating the 
convergence of the algorithm. These results prove 
that the suggested contour optimization algorithm is 
appropriate for calculating the distribution of trans-
portation flows in a network. It hardly makes sense 
to question which of the algorithms analysed is the 
best, unless it were possible to analyse which algo-
rithm is more appropriate given specific conditions. 
However, this requires a lot of calculations with dif-
ferent networks and different parameters. Thus, prac-
tice should produce an answer to this question.  

Results of the calculations highlighted one more 
advantage of the suggested algorithm. Algorithms 
based on lining principles are irregular given an in-
crease in the number of iterations. They do not en-
sure a consecutive decrease in the optimum criterion, 
as linear approximation is rather approximate. 
Meanwhile, the suggested algorithm is regular, 
which allows to avoid unnecessary iterations of the 
algorithm. 

 
 
Conclusions 
 
Successful distribution of transportation flows 

in a network leads to a reduction in transportation 
costs. Therefore, studies in this field are important 
from both, the theoretical and the practical points of 
view. 

The scope of practical problems in transporta-
tion flow distribution is formidable—it covers large 
networks, a considerable variety of cargo and cate-
gories of passengers. This is why the path followed 
by classical approaches in solving these problems is 
absolutely natural: to replace a non-linear problem of 
a large scope by a succession of linear problems, as 
modern approaches can solve problems of transpor-
tation flow distribution of a large scope only in a 
linear manner. However, problems based on the lin-
ing principle have some essential drawbacks. First of 
all, they require initial formation of correspondences 
which are afterwards distributed in the transport 
network for routes that are the shortest in terms of 
the optimum criterion. Secondly, these algorithms 
include a number of heuristic elements—their effec-
tiveness depends on the proper selection of succes-
sion parameters, and this requires certain skills. 
These algorithms are also irregular. They are not 
applicable in case of non-smooth optimum criteria. 

Classical approaches based on the lining princi-
ple have been seen as having primary and unique 
significance up to now. As an alternative, the article 
suggests an original approach based on optimization 
of transportation flows in the individual contours or 
in their groups. The suggested approach of contour 



Modelling and Optimization of Transportation Costs 

 

27

optimization has obvious advantages: there is no 
need for advance formation of correspondences, it is 
rigorous in mathematical terms; it is regular and ap-
propriate in cases of non-smooth transportation cost 
functions. A special way to encode the transport 
network and the use of graph theory measures allows 
for the provision of all information in the most com-
pact way, making this algorithm useful in solving 
problems of large scope—those with practical im-
portance. Experimental calculations proved this al-
gorithm to be absolutely appropriate in solving prob-
lems of transportation flow distribution, and the re-
sults derived were not worse or were close to the 
results derived by traditional approaches. 
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SUPPLEMENTS 
 

Supplement 1  
 

Oriented graph describing the transport network and 
the corresponding node-arc incidence matrix   

 

 
 

Figure 1. Oriented graph describing the transport  
network consisting of 5 (V1, V2, ...,V5) transportation 

points and six (L1, L2, ..., L6) communication lines linking 
transport networks. 

 
 
A transport network can be illustrated graphi-

cally as an oriented or non-oriented graph with a 
topology described by its matrix of incidences. Each 
line of the incidence matrix corresponds to a graph 
arc, and each column corresponds to an individual 
node in the graph. Each element of the incidence 
matrix of the non-oriented graph may have values of 
either 1 or 0 reflecting whether the relevant arc and 
the node are linked or not. In an oriented graph 
(graph with arcs that have a defined direction), an 
element of the incidence matrix equals -1 if the rele-
vant arc goes towards the node, and equals +1 if the 
arc goes away from it. Another graph with a separate 
incidence matrix may correspond to each constituent 
of the flow.  
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V1  V2  V3  V4  V5 
L1   1    -1     0     0    0 
L2   1     0    -1     0    0 
L3     0     0     1     0   -1 
L4     0     1     0    -1    0 
L5     0     1     0     0   -1 
L6     0     0     0     1   -1 

 
Figure 2. Incidence matrix that corresponds to the  

oriented graph shown in Figure 1. 
 
 

Supplement 2 
 

Graph with separated tree and free arcs, and the corre-
sponding incidence matrix  for the arcs.  

 
Separation of the network arcs into tree and free 

arcs is graphically shown in Figure 3; the incidence 
matrix for arcs which corresponds to this separation 
is shown in Figure 4. The network tree consists of all 
arcs in the network which do not form contours in 
the network. The selection of the tree is not unambi-
guous.  

 

 
Figure. 3. Graph reflecting the transport network with free 

(L3 and L6) and tree 
(L1, L2, L4, L5) arcs separated. 

 
L3   L6 

L1    -1      0 
L2     1      0 
L4     0      1 
L5    -1     -1 

 
Figure 4. Incidence matrix for arcs that corresponds to the 

oriented graph shown in Figure 1 

 
Elements of the incidence matrix that corre-

spond to the tree arcs equal -1 if their directions in 
the contour are opposite to the direction of the free 
arc that defines this contour; they equal 1 if these 
directions concur, and they equal 0 if the contour 
does not include tree arcs. If flow in the free arc 
(e.g., L6) increases by value ∆X, then flow in the 
tree arc L4, whose concurs with the direction of the 
free arc will increase by the same value, and in tree 
arc L5, whose direction is opposite to the direction 
of the free arc L6, flow will decrease by the same 
value. 

 
 

Supplement 3 
 

Graphical comparison of the convergence of 
classical and suggested algorithms towards  

solution A 
 

 
  a) classical algorithm b) suggested algorithm 

  
 
Figure 5 The nature of convergence of the classical (a) 

and suggested (b) algorithms towards the solution in the 
“ditch“. 
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Santrauka. Straipsnyje nagrinėjami srautų paskirstymo būdai transporto tinkle siekiant sumažinti transportavimo 

išlaidas. Aptariamos transporto srautų formavimosi ypatybės atskirose transporto sistemose, t. y. normatyvinėse, kai 
srautai formuojami vadovaujantis vienu ekonominio-techninio turinio kriterijumi,  rodančiu visuomenės išlaidas trans-
portavimui, ir deskriptyvinėse, kai kiekvienas važiuojantysis vadovaujasi savo individualiu išlaidų minimumo kriteri-
jumi, sistemose. Aprašoma transportavimo išlaidų struktūra bei jų priklausomybės nuo srautų dydžio nustatymo prin-
cipai tokių Lietuvai svarbių rūšių  kaip geležinkelių  ir automobilių transporte. Nagrinėjami klasikiniai srautų paskir-
stymo modeliai bei srautų problemų sprendimo būdai. Pateikiamas naujas srautų paskirstymo būdas transporto tinkle, 
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pagrįstas srautų optimizavimu atskirose tinklo kontūruose arba jų grupėse. Siūlomas metodas matematiniu požiūriu 
yra griežtesnis negu klasikiniai ir todėl čia išvengiama euristinio pobūdžio problemų, būdingų klasikiniams metodams. 
Eksperimentiniai skaičiavimai parodė, jog siūlomas metodas gali būti taikomas ir praktinę reikšmę turintiem uždav-
iniams  spręsti.                
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